Anomaly prediction of Internet behavior based on generative adversarial networks

被引:0
|
作者
Wang, XiuQing [1 ,2 ,3 ]
An, Yang [1 ]
Hu, Qianwei [1 ]
机构
[1] College of Computer and Cyber Security, Hebei Normal University, Hebei, Shijiazhuang
[2] Hebei Provincial Key Laboratory of Network & Information Security, College of Computer and Cyber Security, Hebei, Shijiazhuang
[3] Hebei Provincial Engineering Research Center for Supply Chain Big Data Analytics & Data Security, Hebei Normal University, Hebei, Shijiazhuang
基金
中国国家自然科学基金;
关键词
Anomaly prediction; Deep learning; Generative adversarial networks; Internet behaviors;
D O I
10.7717/PEERJ-CS.2009
中图分类号
学科分类号
摘要
With the popularity of Internet applications, a large amount of Internet behavior log data is generated. Abnormal behaviors of corporate employees may lead to internet security issues and data leakage incidents. To ensure the safety of information systems, it is important to research on anomaly prediction of Internet behaviors. Due to the high cost of labeling big data manually, an unsupervised generative model–Anomaly Prediction of Internet behavior based on Generative Adversarial Networks (APIBGAN), which works only with a small amount of labeled data, is proposed to predict anomalies of Internet behaviors. After the input Internet behavior data is preprocessed by the proposed method, the data-generating generative adversarial network (DGGAN) in APIBGAN learns the distribution of real Internet behavior data by leveraging neural networks’ powerful feature extraction from the data to generate Internet behavior data with random noise. The APIBGAN utilizes these labeled generated data as a benchmark to complete the distance-based anomaly prediction. Three categories of Internet behavior sampling data from corporate employees are employed to train APIBGAN: (1) Online behavior data of an individual in a department. (2) Online behavior data of multiple employees in the same department. (3) Online behavior data of multiple employees in different departments. The prediction scores of the three categories of Internet behavior data are 87.23%, 85.13%, and 83.47%, respectively, and are above the highest score of 81.35% which is obtained by the comparison method based on Isolation Forests in the CCF Big Data & Computing Intelligence Contest (CCF-BDCI). The experimental results validate that APIBGAN predicts the outlier of Internet behaviors effectively through the GAN, which is composed of a simple three-layer fully connected neural networks (FNNs). We can use APIBGAN not only for anomaly prediction of Internet behaviors but also for anomaly prediction in many other applications, which have big data infeasible to label manually. Above all, APIBGAN has broad application prospects for anomaly prediction, and our work also provides valuable input for anomaly prediction-based GAN. © 2024 Wang et al.
引用
收藏
相关论文
共 50 条
  • [21] Generative Adversarial Networks for Stochastic Video Prediction With Action Control
    Hu, Zhihang
    Turki, Turki
    Wang, Jason T. L.
    IEEE ACCESS, 2020, 8 (08): : 63336 - 63348
  • [22] Toward Generative Adversarial Networks for the Industrial Internet of Things
    Qian, Cheng
    Yu, Wei
    Lu, Chao
    Griffith, David
    Golmie, Nada
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (19): : 19147 - 19159
  • [23] N-GAN: a novel anomaly-based network intrusion detection with generative adversarial networks
    Iliyasu A.S.
    Deng H.
    International Journal of Information Technology, 2022, 14 (7) : 3365 - 3375
  • [24] Future of generative adversarial networks (GAN) for anomaly detection in network security: A review
    Lim, Willone
    Yong, Kelvin Sheng Chek
    Lau, Bee Theng
    Tan, Colin Choon Lin
    COMPUTERS & SECURITY, 2024, 139
  • [25] Forward-Backward Generative Adversarial Networks for Anomaly Detection
    Kim, Youngnam
    Choi, Seungjin
    ASIAN CONFERENCE ON MACHINE LEARNING, VOL 101, 2019, 101 : 1142 - 1155
  • [26] Unsupervised anomaly detection using inverse generative adversarial networks
    Xiao, Feng
    Zhou, Jianfeng
    Han, Kunpeng
    Hu, Haoyuan
    Fan, Jicong
    INFORMATION SCIENCES, 2025, 689
  • [27] Anomaly Generation Using Generative Adversarial Networks in Host-Based Intrusion Detection
    Salem, Milad
    Taheri, Shayan
    Yuan, Jiann Shiun
    2018 9TH IEEE ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON), 2018, : 683 - 687
  • [28] Generative Adversarial Network and Auto Encoder based Anomaly Detection in Distributed IoT Networks
    Tian Zixu
    Liyanage, Kushan Sudheera Kalupahana
    Gurusamy, Mohan
    2020 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2020,
  • [29] Stock Market Prediction Based on Generative Adversarial Network
    Zhang, Kang
    Zhong, Guoqiang
    Dong, Junyu
    Wang, Shengke
    Wang, Yong
    2018 INTERNATIONAL CONFERENCE ON IDENTIFICATION, INFORMATION AND KNOWLEDGE IN THE INTERNET OF THINGS, 2019, 147 : 400 - 406
  • [30] Convolutional Transformer based Dual Discriminator Generative Adversarial Networks for Video Anomaly Detection
    Feng, Xinyang
    Song, Dongjin
    Chen, Yuncong
    Chen, Zhengzhang
    Ni, Jingchao
    Chen, Haifeng
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 5546 - 5554