Anomaly prediction of Internet behavior based on generative adversarial networks

被引:0
|
作者
Wang, XiuQing [1 ,2 ,3 ]
An, Yang [1 ]
Hu, Qianwei [1 ]
机构
[1] College of Computer and Cyber Security, Hebei Normal University, Hebei, Shijiazhuang
[2] Hebei Provincial Key Laboratory of Network & Information Security, College of Computer and Cyber Security, Hebei, Shijiazhuang
[3] Hebei Provincial Engineering Research Center for Supply Chain Big Data Analytics & Data Security, Hebei Normal University, Hebei, Shijiazhuang
基金
中国国家自然科学基金;
关键词
Anomaly prediction; Deep learning; Generative adversarial networks; Internet behaviors;
D O I
10.7717/PEERJ-CS.2009
中图分类号
学科分类号
摘要
With the popularity of Internet applications, a large amount of Internet behavior log data is generated. Abnormal behaviors of corporate employees may lead to internet security issues and data leakage incidents. To ensure the safety of information systems, it is important to research on anomaly prediction of Internet behaviors. Due to the high cost of labeling big data manually, an unsupervised generative model–Anomaly Prediction of Internet behavior based on Generative Adversarial Networks (APIBGAN), which works only with a small amount of labeled data, is proposed to predict anomalies of Internet behaviors. After the input Internet behavior data is preprocessed by the proposed method, the data-generating generative adversarial network (DGGAN) in APIBGAN learns the distribution of real Internet behavior data by leveraging neural networks’ powerful feature extraction from the data to generate Internet behavior data with random noise. The APIBGAN utilizes these labeled generated data as a benchmark to complete the distance-based anomaly prediction. Three categories of Internet behavior sampling data from corporate employees are employed to train APIBGAN: (1) Online behavior data of an individual in a department. (2) Online behavior data of multiple employees in the same department. (3) Online behavior data of multiple employees in different departments. The prediction scores of the three categories of Internet behavior data are 87.23%, 85.13%, and 83.47%, respectively, and are above the highest score of 81.35% which is obtained by the comparison method based on Isolation Forests in the CCF Big Data & Computing Intelligence Contest (CCF-BDCI). The experimental results validate that APIBGAN predicts the outlier of Internet behaviors effectively through the GAN, which is composed of a simple three-layer fully connected neural networks (FNNs). We can use APIBGAN not only for anomaly prediction of Internet behaviors but also for anomaly prediction in many other applications, which have big data infeasible to label manually. Above all, APIBGAN has broad application prospects for anomaly prediction, and our work also provides valuable input for anomaly prediction-based GAN. © 2024 Wang et al.
引用
收藏
相关论文
共 50 条
  • [1] Anomaly prediction of Internet behavior based on generative adversarial networks
    Wang, Xiuqing
    An, Yang
    Hu, Qianwei
    PEERJ COMPUTER SCIENCE, 2024, 10
  • [2] APIB-GAN: A generative adversarial networks based approach for anomaly prediction of internet behavior
    Fang, Yetong
    PHYSICAL COMMUNICATION, 2024, 64
  • [3] Video anomaly detection based on ensemble generative adversarial networks
    Gu Jia-Cheng
    Long Ying-Wen
    Ji Ming-Ming
    CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2022, 37 (12) : 1607 - 1613
  • [4] A Generative Adversarial Networks for Log Anomaly Detection
    Duan, Xiaoyu
    Ying, Shi
    Yuan, Wanli
    Cheng, Hailong
    Yin, Xiang
    COMPUTER SYSTEMS SCIENCE AND ENGINEERING, 2021, 37 (01): : 135 - 148
  • [5] Essential protein prediction based on generative adversarial networks
    Lu, Pengli
    Qiao, Guoxin
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2025,
  • [6] Anomaly detection using deep convolutional generative adversarial networks in the internet of things
    Mishra, Amit Kumar
    Paliwal, Shweta
    Srivastava, Gautam
    ISA TRANSACTIONS, 2024, 145 : 493 - 504
  • [7] Generative Adversarial Networks for anomaly detection in aerial images
    Contreras-Cruz, Marco A.
    Correa-Tome, Fernando E.
    Lopez-Padilla, Rigoberto
    Ramirez-Paredes, Juan-Pablo
    COMPUTERS & ELECTRICAL ENGINEERING, 2023, 106
  • [8] Memory-Augmented Generative Adversarial Networks for Anomaly Detection
    Yang, Ziyi
    Zhang, Teng
    Bozchalooi, Iman Soltani
    Darve, Eric
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (06) : 2324 - 2334
  • [9] Impact of Hyperparameters on the Generative Adversarial Networks Behavior
    Sabiri, Bihi
    El Asri, Bouchra
    Rhanoui, Maryem
    ICEIS: PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON ENTERPRISE INFORMATION SYSTEMS - VOL 1, 2022, : 428 - 438
  • [10] Generative Adversarial Networks for Failure Prediction
    Zheng, Shuai
    Farahat, Ahmed
    Gupta, Chetan
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2019, PT III, 2020, 11908 : 621 - 637