Outside-in directional sodium deposition through self-supporting gradient fluorinated magnesium alloy framework toward high-rate anode-free Na batteries

被引:9
作者
Guo, Wei [1 ]
Liu, Xiaofei [1 ]
Mu, Yue [1 ]
Yue, Guichu [4 ]
Liu, Jingchong [3 ]
Zhu, Keping [1 ]
Cui, Zhimin [1 ]
Wang, Nue [1 ]
Chen, Zhonghui [2 ]
Zhao, Yong [1 ,4 ]
机构
[1] Beihang Univ, Sch Chem, Lab Bioinspired Smart Interfacial Sci & Technol, Minist Educ,Beijing Key Lab Bioinspired Energy Mat, Beijing 100191, Peoples R China
[2] Harbin Inst Technol, Adv Optoelect Technol Res Inst, Zhengzhou Res Inst, Zhengzhou 450052, Peoples R China
[3] Univ Sci & Technol Beijing, Sch Chem & Biol Engn, Beijing 100083, Peoples R China
[4] Inner Mongolia Univ Technol, Chem Engn Coll, Hohhot 010051, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
Self-supporting framework host; Gradient fluorinated alloy; Sodiophilic nucleation sites; Outside-in directional Na deposition; Anode-free sodium metal batteries; METAL; ELECTROLYTE; INTERPHASE;
D O I
10.1016/j.ensm.2024.103840
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Constructing high-rate sodium anodes promotes the progress of high energy/power density Na metal batteries. However, it lacks effective strategies to regulate Na deposition behaviors under high current density and high capacity, greatly compromising their energy density, cycling life, and safety. Herein, we construct a selfsupporting framework host consisting of nitrogen-doped carbon hollow nanofibers with uniformly embedded MgF2 (MgF2@NCHNFs), facilitating outside-in directional Na deposition. During the first Na plating, the MgF2 in the tube wall of NCHNFs is in-situ converted to gradient fluorinated alloy architecture, where the outmost NaF homogenizes Na+ flux, the subsurface sodiophilic N sites and gradient distribution Mg sites facilitate Na deposition into the internal space of hollow nanofibers. Thus, the MgF2@NCHNFs exhibit dendrite-free and directional Na deposition behaviors even at high rate (10 mA cm-2 ) and high capacity (10 mAh cm-2 ). The superiorities of the Na-MgF2@NCHNFs are demonstrated in high-rate anode-less/anode-free sodium metal batteries using sodium vanadium phosphate and sulfur as cathodes. Furthermore, the pouch cells deliver a super- high capacity retention of 96.0 % over 400 cycles at 2 C. This work provides a new strategy for practical applications of multifunctional Na hosts in sodium metal batteries, and can extend to other metal batteries.
引用
收藏
页数:9
相关论文
共 56 条
[21]   3D Sb-Based Composite Framework with Gradient Sodiophilicity for Ultrastable Sodium Metal Anodes [J].
Li, Zhaopeng ;
Qin, Hongye ;
Tian, Wenyue ;
Miao, Licheng ;
Cao, Kangzhe ;
Si, Yuchang ;
Li, Haixia ;
Wang, Qinglun ;
Jiao, Lifang .
ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (05)
[22]   Room-Temperature Sodium-Sulfur Batteries: Rules for Catalyst Selection and Electrode Design [J].
Li, Zhen ;
Wang, Changlai ;
Ling, Fangxin ;
Wang, Lifeng ;
Bai, Ruilin ;
Shao, Yu ;
Chen, Qianwang ;
Yuan, Hua ;
Yu, Yan ;
Tan, Yeqiang .
ADVANCED MATERIALS, 2022, 34 (32)
[23]   Gradient fluorinated alloy to enable highly reversible Zn-metal anode chemistry [J].
Liang, Guojin ;
Zhu, Jiaxiong ;
Yan, Boxun ;
Li, Qing ;
Chen, Ao ;
Chen, Ze ;
Wang, Xiaoqi ;
Xiong, Bo ;
Fan, Jun ;
Xu, Jin ;
Zhi, Chunyi .
ENERGY & ENVIRONMENTAL SCIENCE, 2022, 15 (03) :1086-1096
[24]   Navigating fast and uniform zinc deposition via a versatile metal-organic complex interphase [J].
Liu, Huanyan ;
Wang, Jian-Gan ;
Hua, Wei ;
Ren, Lingbo ;
Sun, Huanhuan ;
Hou, Zhidong ;
Huyan, Yu ;
Cao, Yunjing ;
Wei, Chunguang ;
Kang, Feiyu .
ENERGY & ENVIRONMENTAL SCIENCE, 2022, 15 (05) :1872-1881
[25]   Free-Standing Hollow Carbon Fibers as High-Capacity Containers for Stable Lithium Metal Anodes [J].
Liu, Lin ;
Yin, Ya-Xia ;
Li, Jin-Yi ;
Li, Nian-Wu ;
Zeng, Xian-Xiang ;
Ye, Huan ;
Guo, Yu-Guo ;
Wan, Li-Jun .
JOULE, 2017, 1 (03) :563-575
[26]  
Liu N, 2014, NAT NANOTECHNOL, V9, P187, DOI [10.1038/nnano.2014.6, 10.1038/NNANO.2014.6]
[27]   Inorganic-Organic Hybrid Multifunctional Solid Electrolyte Interphase Layers for Dendrite-Free Sodium Metal Anodes [J].
Liu, Pei ;
Miao, Licheng ;
Sun, Zhiqin ;
Chen, Xuchun ;
Si, Yuchang ;
Wang, Qinglun ;
Jiao, Lifang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (47)
[28]   Regulating Deposition Behavior of Sodium Ions for Dendrite-Free Sodium-Metal Anode [J].
Liu, Pei ;
Yi, Haotian ;
Zheng, Siyu ;
Li, Zhaopeng ;
Zhu, Kunjie ;
Sun, Zhiqin ;
Jin, Ting ;
Jiao, Lifang .
ADVANCED ENERGY MATERIALS, 2021, 11 (36)
[29]   Building Fast Ion-Conducting Pathways on 3D Metallic Scaffolds for High-Performance Sodium Metal Anodes [J].
Lu, Xuan ;
Zhao, Hongyang ;
Qin, Yanyang ;
Matios, Edward ;
Luo, Jianmin ;
Chen, Ruochen ;
Nan, Hu ;
Wen, Bo ;
Zhang, Yanan ;
Li, Yuyang ;
He, Qiangrui ;
Deng, Xuetian ;
Lin, Jiande ;
Zhang, Kai ;
Wang, Hongkang ;
Xi, Kai ;
Su, Yaqiong ;
Hu, Xiaofei ;
Ding, Shujiang ;
Li, Weiyang .
ACS NANO, 2023, 17 (11) :10665-10676
[30]   Dendrite suppression enabled longevous sodium metal batteries by sodiophilic Zein/MXene nanofiber modulated polypropylene separator [J].
Miao, Jingzhong ;
Fang, Yuan ;
Wang, Hui ;
Lyu, Linlong ;
Bai, Wanlong ;
Li, Beiming ;
Kong, Dezhi ;
Xu, Tingting ;
Li, Xinjian ;
Xu, Zheng-Long ;
Wang, Ye .
ENERGY STORAGE MATERIALS, 2024, 71