A three-component giant radio halo: The puzzling case of the galaxy cluster Abell 2142

被引:15
作者
Bruno L. [1 ,2 ]
Botteon A. [2 ]
Shimwell T. [3 ,4 ]
Cuciti V. [1 ,2 ,5 ]
De Gasperin F. [2 ,5 ]
Brunetti G. [2 ]
Dallacasa D. [1 ,2 ]
Gastaldello F. [6 ]
Rossetti M. [6 ]
Van Weeren R.J. [4 ]
Venturi T. [2 ]
Russo S.A. [7 ]
Taffoni G. [7 ]
Cassano R. [2 ]
Biava N. [1 ,2 ]
Lusetti G. [5 ]
Bonafede A. [1 ,2 ]
Ghizzardi S. [6 ]
De Grandi S. [6 ]
机构
[1] Dipartimento di Fisica e Astronomia (DIFA), Università di Bologna, Via Gobetti 93/2, Bologna
[2] Istituto Nazionale di Astrofisica (INAF) - Istituto di Radioastronomia (IRA), Via Gobetti 101, Bologna
[3] Astron, Netherlands Institute for Radio Astronomy, Oude Hoogeveensedijk 4, Dwingeloo
[4] Leiden Observatory, Leiden University, PO Box 9513, Leiden
[5] Hamburger Sternwarte, Universität Hamburg, Gojenbergsweg 112, Hamburg
[6] Inaf - Iasf Milano, Via A. Corti 12, Milano
[7] Istituto Nazionale di Astrofisica (INAF), Astronomical Observatory of Trieste, Trieste
基金
爱尔兰科学基金会; 英国科研创新办公室; 英国科学技术设施理事会; 欧盟地平线“2020”; 欧洲研究理事会;
关键词
Acceleration of particles; Galaxies: clusters: individual: Abell 2142; Galaxies: clusters: intracluster medium; Large-scale structure of Universe; Radiation mechanisms: non-thermal; Radiation mechanisms: thermal;
D O I
10.1051/0004-6361/202347245
中图分类号
TK1 [热力工程、热机];
学科分类号
080702 ;
摘要
Context. Turbulence introduced into the intracluster medium (ICM) through cluster-merger events transfers energy to non-thermal components, and can trigger the formation of diffuse synchrotron radio sources. Typical diffuse sources in the form of giant radio halos and mini-halos are found in merging and relaxed cool-core galaxy clusters, respectively. On the other hand, recent observations reveal an increasing complexity to the non-thermal phenomenology. Aims. Abell 2142 (A2142) is a mildly disturbed cluster that exhibits uncommon thermal and non-thermal properties. It is known to host a hybrid halo consisting of two components (H1 and H2), namely a mini-halo-like and an enigmatic elongated radio halo-like structure. We aim to investigate the properties, origin, and connections of each component. Methods. We present deep LOFAR observations of A2142 in the frequency ranges 30- 78 MHz and 120 - 168 MHz. With complementary multi-frequency radio and X-ray data, we analysed the radio spectral properties of the halo and assessed the connection between the non-thermal and thermal components of the ICM. Results. We detect a third radio component (H3), which extends over the cluster volume on scales of ~2 Mpc, embeds H1 and H2, and has a morphology that roughly follows the thermal ICM distribution. The radio spectral index is moderately steep in H1 (α=1.09 ± 0.02) and H2 (α=1.15 ± 0.02), but is steeper (α=1.57 ± 0.20) in H3. Our analysis of the thermal and non-thermal properties allowed us to discuss possible formation scenarios for each radio component. Turbulence from sloshing motions of low-entropy gas on different scales may be responsible for the origin of H1 and H2. We classified H3 as a giant ultrasteep spectrum radio halo, and find that it may trace the residual activity from an old energetic merger and/or inefficient turbulent reacceleration induced by ongoing minor mergers. © 2023 EDP Sciences. All rights reserved.
引用
收藏
相关论文
共 144 条
  • [1] Arnaud K.A., Jacoby G.H., Barnes J., Astronomical Data Analysis Software and Systems V, 101, (1996)
  • [2] Robitaille T.P., Et al., A&A, 558, (2013)
  • [3] Price-Whelan A.M., Et al., AJ, 156, (2018)
  • [4] Beresnyak A., Xu H., Li H., Schlickeiser R., ApJ, 771, (2013)
  • [5] Bertocco S., Goz D., Tornatore L., Pizzo R., Deul E.R., Mol J.D., De Plaa J., Verkouter H., Et al., Astronomical Data Analysis Software and Systems XXIX, 527, (2020)
  • [6] Biava N., De Gasperin F., Bonafede A., Et al., MNRAS, 508, (2021)
  • [7] Blasi P., Colafrancesco S., Astropart. Phys., 12, (1999)
  • [8] Bonafede A., Bruggen M., Van Weeren R., Et al., MNRAS, 426, (2012)
  • [9] Bonafede A., Intema H.T., Bruggen M., Et al., ApJ, 785, (2014)
  • [10] Bonafede A., Intema H.T., Bruggen M., Et al., MNRAS, 444, (2014)