A series of lanthanide complexes with 2,4-dimethylbenzoic acid and 2,2:6′,2″-terpyridine: Supramolecular structures, thermal decomposition mechanism and photoluminescence

被引:0
作者
Ying-Ying L. [1 ,2 ]
Ning R. [3 ]
Shu-Ping W. [1 ,2 ]
Jian-Jun Z. [1 ,2 ]
机构
[1] Testing and Analysis Center, Hebei Normal University, Shijiazhuang
[2] College of Chemistry & Material Science, Hebei Normal University, Shijiazhuang
[3] College of Chemical Engineering & Material, Handan University, Hebei Key Laboratory of Heterocyclic Compounds, Handan
基金
中国国家自然科学基金;
关键词
Fluorescence lifetimes; Intrinsic quantum yield; Lanthanide complexes; Photoluminescence; Supramolecular structure; Thermal behavior;
D O I
10.1016/j.ica.2020.119755
中图分类号
学科分类号
摘要
Six new binuclear lanthanide complexes [Ln(2,4-DMBA)3(terpy)(H2O)]2 (Ln = Eu (1), La (2), Pr (3), Nd (4), Sm (5), Gd (6)) (2,4-DMBA = 2,4-dimethylbenzoate; terpy = 2,2:6′,2″-terpyridine) and four mononuclear complexes [Ln(2,4-DMBA)3(terpy)(H2O)] (Ln = Dy (7), Ho (8), Er (9), Tb (10)) have been synthesized. Complexes 1–6 and 7–10 are isomorphous, adopting interesting structures. In the structures of complexes 1–6, two nine-coordinated Ln(III) centers are linked by two 2,4-DMBA ligands in bridging mode. The other two 2,4-DMBA ligands coordinate with one Ln(III) cation in monodentate and chelating modes. In the structures of complexes 7–10, the Ln(III) center is eight-coordinated. Complexes 1–6 and 7–10 can each aggregate to form one-dimensional and two-dimensional supramolecular structures. Thermal decomposition of complexes 1–10 has been investigated by TG-DSC/FTIR. Interestingly, all of the complexes exhibit a similar three-step decomposition process. The Eu(III) and Tb(III) complexes show strong red and green visible light luminescence. Finally, fluorescence lifetimes and intrinsic quantum yields have been calculated for complexes 1 and 10. © 2020 Elsevier B.V.
引用
收藏
相关论文
共 38 条
[31]  
Li G.G., Hou Z.Y., Peng C., Wang W.X., Cheng Z.Y., Li C.X., Lian H.Z., Lin J., Adv. Funct. Mater., 20, pp. 3446-3456, (2010)
[32]  
Li W.X., Zheng Y.S., Chai W.J., Ren T., Liu Y., Li Y.J., Sun X.J., Xing G.W., Luminescence, 26, pp. 54-761, (2011)
[33]  
Liu Y.H., Kong W.H., Yang Z.H., Dai M., Shi L., Guo D.C., J. Fluoresc, 26, pp. 567-576, (2016)
[34]  
He X., Yu C., Lin J., Zhang X., Li Q.L., Fang Y., Liu Z.Y., Li L.L., Huang Y., Tang C.C., J. Alloys. Compd., 768, pp. 15-21, (2018)
[35]  
Lv Y., Li Z.Z., Jin Y.H., Wu H.Y., Wang C.L., Ju G.F., Chen L., Hu Z.F., Hu Y.H., Ceram. Int., 45, pp. 5971-5980, (2019)
[36]  
Srihari T., Jayasankar C.K., Opt. Mater., 69, pp. 87-95, (2017)
[37]  
Zhu M.M., Ren N., Zhang J.J., Wang D.Q., Appl. Organomet. Chem., 32, (2018)
[38]  
Feng S.Y., Li W.X., Zheng Y.S., Xin X.D., Guo F., Cao X.F., J. Lumin., 162, pp. 92-96, (2015)