A series of lanthanide complexes with 2,4-dimethylbenzoic acid and 2,2:6′,2″-terpyridine: Supramolecular structures, thermal decomposition mechanism and photoluminescence

被引:0
作者
Ying-Ying L. [1 ,2 ]
Ning R. [3 ]
Shu-Ping W. [1 ,2 ]
Jian-Jun Z. [1 ,2 ]
机构
[1] Testing and Analysis Center, Hebei Normal University, Shijiazhuang
[2] College of Chemistry & Material Science, Hebei Normal University, Shijiazhuang
[3] College of Chemical Engineering & Material, Handan University, Hebei Key Laboratory of Heterocyclic Compounds, Handan
基金
中国国家自然科学基金;
关键词
Fluorescence lifetimes; Intrinsic quantum yield; Lanthanide complexes; Photoluminescence; Supramolecular structure; Thermal behavior;
D O I
10.1016/j.ica.2020.119755
中图分类号
学科分类号
摘要
Six new binuclear lanthanide complexes [Ln(2,4-DMBA)3(terpy)(H2O)]2 (Ln = Eu (1), La (2), Pr (3), Nd (4), Sm (5), Gd (6)) (2,4-DMBA = 2,4-dimethylbenzoate; terpy = 2,2:6′,2″-terpyridine) and four mononuclear complexes [Ln(2,4-DMBA)3(terpy)(H2O)] (Ln = Dy (7), Ho (8), Er (9), Tb (10)) have been synthesized. Complexes 1–6 and 7–10 are isomorphous, adopting interesting structures. In the structures of complexes 1–6, two nine-coordinated Ln(III) centers are linked by two 2,4-DMBA ligands in bridging mode. The other two 2,4-DMBA ligands coordinate with one Ln(III) cation in monodentate and chelating modes. In the structures of complexes 7–10, the Ln(III) center is eight-coordinated. Complexes 1–6 and 7–10 can each aggregate to form one-dimensional and two-dimensional supramolecular structures. Thermal decomposition of complexes 1–10 has been investigated by TG-DSC/FTIR. Interestingly, all of the complexes exhibit a similar three-step decomposition process. The Eu(III) and Tb(III) complexes show strong red and green visible light luminescence. Finally, fluorescence lifetimes and intrinsic quantum yields have been calculated for complexes 1 and 10. © 2020 Elsevier B.V.
引用
收藏
相关论文
共 38 条
[1]  
Li X.Q., Gu J.P., Zhou Z., Ma L.F., Tang Y.P., Gao J.W., Wang Q.M., Chem. Eng. J., 358, pp. 67-73, (2019)
[2]  
Bazhina E.S., Aleksandrov G.G., Kiskin M.A., Korlyukov A.A., Efimov N.N., Bogomyakov A.S., Starikova A.A., Mironov V.S., Ugolkova E.A., Minin V.V., Sidorov A.A., Eremenko I.L., Eur. J. Inorg. Chem., 2018, pp. 5075-5090, (2018)
[3]  
Chen P.Y., Wu M.Z., Liu Z.Y., Tian L., Zhang Y.Q., Dalton Trans., 48, pp. 558-565, (2019)
[4]  
Ge Y., Cui Y.F., Huang Y., Wang G.Q., Liu W., Li Y.H., Chen Y.M., Polyhedron., 159, pp. 64-71, (2019)
[5]  
Khalfaoui O., Beghidja A., Long J., Boussadia A., Beghidja C., Guari Y., Larionova J., Dalton Trans., 46, pp. 3943-3952, (2017)
[6]  
Hatanaka M., Wakabayashi T., J. Comput. Chem., 40, pp. 500-506, (2019)
[7]  
Wang Q., Zhang A.Q., Xu W., Luo G., Dong H.L., Liang J., Shen Q.Q., Jia H.S., Liu X.G., Xu B.S., Opt. Laser Technol., 107, pp. 389-397, (2018)
[8]  
Zong G.C., Huo J.X., Ren N., Zhang J.J., Qi X.X., Gao J., Geng L.N., Wang S.P., Shi S.K., Dalton Trans., 44, pp. 14877-14886, (2015)
[9]  
Xie H.Z., Lu G.Z., J. Rare. Earth., 31, pp. 639-644, (2013)
[10]  
Kaur G., Dwivedi Y., Rai S.B., Mater. Chem. Phys., 130, pp. 1351-1356, (2011)