Machine learning for structure-guided materials and process design

被引:2
作者
Morand, Lukas [1 ]
Iraki, Tarek [2 ,3 ]
Dornheim, Johannes [3 ,4 ]
Sandfeld, Stefan [2 ]
Link, Norbert [3 ]
Helm, Dirk [1 ]
机构
[1] Fraunhofer Inst Mech Mat IWM, Freiburg, Germany
[2] Forschungszentrum Julich, Inst Adv Simulat Mat Data Sci & Informat IAS 9, D-52425 Julich, Germany
[3] Univ Appl Sci, Intelligent Syst Res Grp ISRG, Karlsruhe, Germany
[4] Karlsruhe Inst Technol, Inst Appl Mat Computat Mat Sci IAM CMS, Karlsruhe, Germany
关键词
TEXTURE; OPTIMIZATION;
D O I
10.1016/j.matdes.2024.113453
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In recent years, there has been a growing interest in accelerated materials innovation in the context of the process-structure-property chain. In this regard, it is essential to take into account manufacturing processes and tailor materials design approaches to support downstream process design approaches. As a major step into this direction, we present a holistic and generic optimization approach that covers the entire process-structure- property chain in materials engineering. Our approach specifically employs machine learning to address two critical identification problems: a materials design problem, which involves identifying near-optimal material microstructures that exhibit desired properties, and a process design problem that is to find an optimal processing path to manufacture these microstructures. Both identification problems are typically ill-posed, which presents a significant challenge for solution approaches. However, the non-unique nature of these problems offers an important advantage for processing: By having several target microstructures that perform similarly well, processes can be efficiently guided towards manufacturing the best reachable microstructure. The functionality of the approach is demonstrated at manufacturing crystallographic textures with desired properties in a simulated metal forming process.
引用
收藏
页数:11
相关论文
共 67 条
[11]  
Bromley J., 1993, International Journal of Pattern Recognition and Artificial Intelligence, V7, P669, DOI 10.1142/S0218001493000339
[12]   Autonomous materials discovery and manufacturing (AMDM): A review and perspectives [J].
Bukkapatnam, Satish T. S. .
IISE TRANSACTIONS, 2023, 55 (01) :75-93
[13]  
Cox M.A. A., 2008, HDB DATA VISUALIZATI, P315, DOI [10.1201/9780367801700, DOI 10.1007/978-3-540-33037-0_14, 10.1016/B978-012099975-0/50005-1, DOI 10.1016/B978-012099975-0/50005-1]
[14]  
Cuturi Marco., 2013, Advances in Neural Information Processing Systems, V26, P2292
[15]   New frontiers for the materials genome initiative [J].
de Pablo, Juan J. ;
Jackson, Nicholas E. ;
Webb, Michael A. ;
Chen, Long-Qing ;
Moore, Joel E. ;
Morgan, Dane ;
Jacobs, Ryan ;
Pollock, Tresa ;
Schlom, Darrell G. ;
Toberer, Eric S. ;
Analytis, James ;
Dabo, Ismaila ;
DeLongchamp, Dean M. ;
Fiete, Gregory A. ;
Grason, Gregory M. ;
Hautier, Geoffroy ;
Mo, Yifei ;
Rajan, Krishna ;
Reed, Evan J. ;
Rodriguez, Efrain ;
Stevanovic, Vladan ;
Suntivich, Jin ;
Thornton, Katsuyo ;
Zhao, Ji-Cheng .
NPJ COMPUTATIONAL MATERIALS, 2019, 5 (1)
[16]   Deep reinforcement learning methods for structure-guided processing path optimization [J].
Dornheim, Johannes ;
Morand, Lukas ;
Zeitvogel, Samuel ;
Iraki, Tarek ;
Link, Norbert ;
Helm, Dirk .
JOURNAL OF INTELLIGENT MANUFACTURING, 2022, 33 (01) :333-352
[17]   Inverse mapping of quantum properties to structures for chemical space of small organic molecules [J].
Fallani, Alessio ;
Sandonas, Leonardo Medrano ;
Tkatchenko, Alexandre .
NATURE COMMUNICATIONS, 2024, 15 (01)
[18]   Microstructure sensitive design for performance optimization [J].
Fullwood, David T. ;
Niezgoda, Stephen R. ;
Adams, Brent L. ;
Kalidindi, Surya R. .
PROGRESS IN MATERIALS SCIENCE, 2010, 55 (06) :477-562
[19]  
Generale A.P., 2023, AI ACC MAT DES NEURI
[20]   Inverse stochastic microstructure design [J].
Generale, Adam P. ;
Robertson, Andreas E. ;
Kelly, Conlain ;
Kalidindi, Surya R. .
ACTA MATERIALIA, 2024, 271