How nanoscale plastics facilitate the evolution of antibiotic resistance?

被引:1
作者
Xu, Yan [1 ]
Li, Houyu [1 ]
Ding, Yinuo [3 ]
Zhang, Dandan [1 ]
Liu, Wei [2 ]
机构
[1] Minist Agr & Rural Affairs, Agroenvironm Protect Inst, Tianjin 300191, Peoples R China
[2] Univ Geneva, Dept FA Forel Environm & Aquat Sci, Sect Earth & Environm Sci, Geneva, Switzerland
[3] Jilin Agr Univ, Coll Life Sci, Jilin 130118, Peoples R China
基金
中国博士后科学基金;
关键词
Nanoplastics; Serratia marcescens; Antibiotic resistance; Evolution; Membrane function; Metabolism; NANOPARTICLES;
D O I
10.1016/j.jhazmat.2024.136157
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The plastic can enhance the proliferation of antibiotic resistance genes (ARGs), however, the effect of nanoplastics (NPLs) on bacterial antibiotic resistance has not been clearly explained. Herein, we explored the effects and mechanisms of NPLs of different sizes (200 and 600 nm) on the evolution of antibiotic resistance in Serratia marcescens. The results indicated that the evolution of bacterial antibiotic resistance could be promoted under NPLs exposure, which the median of relative abundance of ARGs was 1.11-1.46 times compared to the treatment without NPLs. Transcriptomic analysis showed that the larger size of NPLs mainly increased the permeability of bacterial cell membranes to efflux antibiotics, thus potentiating antibiotic resistance. While, the smaller NPLs is more than that, its enhanced the expression of antibiotic resistance by modulating bacterial metabolic processes. The genome SNP analysis found that the NPLs could cause the genetic mutation occurrence to alter the membrane transport and metabolism processes, and it increased at a size of 200 nm more than at 600 nm NPLs. Importantly, we demonstrated that the horizontal transfer of ARGs was augmented due to the NPLs could dock to bacterial surface proteins and pull their movement to contact with other bacteria (binding energy of membrane proteins:-8.54 kcal/mol), especially the smaller size. It suggests that NPLs will also contribute to the proliferation of ARGs in the environment. This study provides data for understanding the risk of bacterial resistance.
引用
收藏
页数:12
相关论文
共 55 条
[1]   CARD 2023: expanded curation, support for machine learning, and resistome prediction at the Comprehensive Antibiotic Resistance Database [J].
Alcock, Brian P. ;
Huynh, William ;
Chalil, Romeo ;
Smith, Keaton W. ;
Raphenya, Amogelang R. ;
Wlodarski, Mateusz A. ;
Edalatmand, Arman ;
Petkau, Aaron ;
Syed, Sohaib A. ;
Tsang, Kara K. ;
Baker, Sheridan J. C. ;
Dave, Mugdha ;
McCarthy, Madeline C. ;
Mukiri, Karyn M. ;
Nasir, Jalees A. ;
Golbon, Bahar ;
Imtiaz, Hamna ;
Jiang, Xingjian ;
Kaur, Komal ;
Kwong, Megan ;
Liang, Zi Cheng ;
Niu, Keyu C. ;
Shan, Prabakar ;
Yang, Jasmine Y. J. ;
Gray, Kristen L. ;
Hoad, Gemma R. ;
Jia, Baofeng ;
Bhando, Timsy ;
Carfrae, Lindsey A. ;
Farha, Maya A. ;
French, Shawn ;
Gordzevich, Rodion ;
Rachwalski, Kenneth ;
Tu, Megan M. ;
Bordeleau, Emily ;
Dooley, Damion ;
Griffiths, Emma ;
Zubyk, Haley L. ;
Brown, Eric D. ;
Maguire, Finlay ;
Beiko, Robert G. ;
Hsiao, William W. L. ;
Brinkman, Fiona S. L. ;
Van Domselaar, Gary ;
McArthur, Andrew G. .
NUCLEIC ACIDS RESEARCH, 2023, 51 (D1) :D690-D699
[2]   Homozygosity mapping: One more tool in the clinical geneticist's toolbox [J].
Alkuraya, Fowzan S. .
GENETICS IN MEDICINE, 2010, 12 (04) :236-239
[3]   Optimal loading of iron nanoparticles on reverse osmosis membrane surface to reduce biofouling [J].
Armendariz-Ontiveros, M. M. ;
Garcia-Garcia, A. ;
Mai-Prochnow, A. ;
Weihs, G. A. Fimbres .
DESALINATION, 2022, 540
[4]   Loop extrusion as a mechanism for formation of DNA damage repair foci [J].
Arnould, Coline ;
Rocher, Vincent ;
Finoux, Anne-Laure ;
Clouaire, Thomas ;
Li, Kevin ;
Zhou, Felix ;
Caron, Pierre ;
Mangeot, Philippe. E. ;
Ricci, Emiliano P. ;
Mourad, Raphael ;
Haber, James E. ;
Noordermeer, Daan ;
Legube, Gaelle .
NATURE, 2021, 590 (7847) :660-665
[5]   Trace metal sorption on nanoplastics: An innovative analytical approach combining surface analysis and mass spectrometry techniques [J].
Aynard, Antoine ;
Courreges, Cecile ;
Jimenez-Lamana, Javier ;
Raad, Anassya ;
Miqueu, Christelle ;
Grassl, Bruno ;
Reynaud, Stephanie .
ENVIRONMENTAL POLLUTION, 2023, 323
[6]   Lipid-based oral delivery systems for skin deposition of a potential chemopreventive DIM derivative: characterization and evaluation [J].
Boakye, Cedar H. A. ;
Patel, Ketan ;
Patel, Apurva R. ;
Faria, Henrique A. M. ;
Zucolotto, Valtencir ;
Safe, Stephen ;
Singh, Mandip .
DRUG DELIVERY AND TRANSLATIONAL RESEARCH, 2016, 6 (05) :526-539
[7]   Evaluation of a cefoxitin disk diffusion test for the routine detection of methicillin-resistant Staphylococcus aureus [J].
Boubaker, IBB ;
Ben Abbes, R ;
Ben Abdallah, H ;
Mamlouk, K ;
Mahjoubi, F ;
Kammoun, A ;
Hammami, A ;
Ben Redjeb, S .
CLINICAL MICROBIOLOGY AND INFECTION, 2004, 10 (08) :762-765
[8]   Tolerance and resistance of microbial biofilms [J].
Ciofu, Oana ;
Moser, Claus ;
Jensen, Peter Ostrup ;
Hoiby, Niels .
NATURE REVIEWS MICROBIOLOGY, 2022, 20 (10) :621-635
[9]   Nano-Al2O3 can mediate transduction-like transformation of antibiotic resistance genes in water [J].
Ding, Chengshi ;
Jin, Min ;
Ma, Jing ;
Chen, Zhaoli ;
Shen, Zhiqiang ;
Yang, Dong ;
Shi, Danyang ;
Liu, Weili ;
Kang, Meiling ;
Wang, Jingfeng ;
Li, Junwen ;
Qiu, Zhigang .
JOURNAL OF HAZARDOUS MATERIALS, 2021, 405
[10]   Contribution of efflux and mutations in fluoroquinolone susceptibility in MDR enterobacterial isolates: a quantitative and molecular study [J].
Ferrand, Aurelie ;
Vergalli, Julia ;
Bosi, Claude ;
Pantel, Alix ;
Pages, Jean-Marie ;
Davin-Regli, Anne .
JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY, 2023, 78 (06) :1532-1542