Tensor Networks for Interpretable and Efficient Quantum-Inspired Machine Learning

被引:7
作者
Ran, Shi-Ju [1 ]
Su, Gang [2 ,3 ,4 ]
机构
[1] Capital Normal Univ, Dept Phys, Ctr Quantum Phys & Intelligent Sci, Beijing 10048, Peoples R China
[2] Univ Chinese Acad Sci, Kavli Inst Theoret Sci, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, CAS Ctr Excellence Topol Quantum Computat, Beijing 100190, Peoples R China
[4] Univ Chinese Acad Sci, Sch Phys Sci, POB 4588, Beijing 100049, Peoples R China
来源
INTELLIGENT COMPUTING | 2023年 / 2卷
基金
国家重点研发计划; 北京市自然科学基金;
关键词
BOND GROUND-STATES; MUTUAL INFORMATION; NEURAL-NETWORKS; COMPRESSION; ALGORITHMS; MECHANICS; MODELS;
D O I
10.34133/icomputing.0061
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
It is a critical challenge to simultaneously achieve high interpretability and high efficiency with the current schemes of deep machine learning (ML). The tensor network (TN), a well-established mathematical tool originating from quantum mechanics, has shown its unique advantages in developing efficient "white-box" ML schemes. Here, we provide a brief review of the inspiring progress in TN-based ML. On the one hand, the interpretability of TN ML can be accommodated by a solid theoretical foundation based on quantum information and many-body physics. On the other hand, high efficiency can be obtained from powerful TN representations and the advanced computational techniques developed in quantum many-body physics. Keeping pace with the rapid development of quantum computers, TNs are expected to produce novel schemes runnable on quantum hardware in the direction of "quantum artificial intelligence" in the near future.
引用
收藏
页数:12
相关论文
共 187 条
[31]   Projected entangled pair states at finite temperature: Imaginary time evolution with ancillas [J].
Czarnik, Piotr ;
Cincio, Lukasz ;
Dziarmaga, Jacek .
PHYSICAL REVIEW B, 2012, 86 (24)
[32]   Image classification based on quantum K-Nearest-Neighbor algorithm [J].
Dang, Yijie ;
Jiang, Nan ;
Hu, Hao ;
Ji, Zhuoxiao ;
Zhang, Wenyin .
QUANTUM INFORMATION PROCESSING, 2018, 17 (09)
[33]   Ground states of unfrustrated spin Hamiltonians satisfy an area law [J].
de Beaudrap, Niel ;
Osborne, Tobias J. ;
Eisert, Jens .
NEW JOURNAL OF PHYSICS, 2010, 12
[34]   Quantum Entanglement in Neural Network States [J].
Deng, Dong-Ling ;
Li, Xiaopeng ;
Das Sarma, S. .
PHYSICAL REVIEW X, 2017, 7 (02)
[35]   Data compression for quantum machine learning [J].
Dilip, Rohit ;
Liu, Yu-Jie ;
Smith, Adam ;
Pollmann, Frank .
PHYSICAL REVIEW RESEARCH, 2022, 4 (04)
[36]  
Doshi-Velez F, 2017, Arxiv, DOI [arXiv:1702.08608, DOI 10.48550/ARXIV.1702.08608]
[37]  
Dov MB., 2022, Phys Rev Res, V4, P023136
[38]  
Dür W, 2001, PHYS REV A, V63, DOI 10.1103/PhysRevA.63.020303
[39]   Colloquium: Area laws for the entanglement entropy [J].
Eisert, J. ;
Cramer, M. ;
Plenio, M. B. .
REVIEWS OF MODERN PHYSICS, 2010, 82 (01) :277-306
[40]   Towards quantifying information flows: Relative entropy in deep neural networks and the renormalization group [J].
Erdmenger, Johanna ;
Grosvenor, Kevin T. ;
Jefferson, Ro .
SCIPOST PHYSICS, 2022, 12 (01)