Tensor Networks for Interpretable and Efficient Quantum-Inspired Machine Learning

被引:7
作者
Ran, Shi-Ju [1 ]
Su, Gang [2 ,3 ,4 ]
机构
[1] Capital Normal Univ, Dept Phys, Ctr Quantum Phys & Intelligent Sci, Beijing 10048, Peoples R China
[2] Univ Chinese Acad Sci, Kavli Inst Theoret Sci, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, CAS Ctr Excellence Topol Quantum Computat, Beijing 100190, Peoples R China
[4] Univ Chinese Acad Sci, Sch Phys Sci, POB 4588, Beijing 100049, Peoples R China
来源
INTELLIGENT COMPUTING | 2023年 / 2卷
基金
国家重点研发计划; 北京市自然科学基金;
关键词
BOND GROUND-STATES; MUTUAL INFORMATION; NEURAL-NETWORKS; COMPRESSION; ALGORITHMS; MECHANICS; MODELS;
D O I
10.34133/icomputing.0061
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
It is a critical challenge to simultaneously achieve high interpretability and high efficiency with the current schemes of deep machine learning (ML). The tensor network (TN), a well-established mathematical tool originating from quantum mechanics, has shown its unique advantages in developing efficient "white-box" ML schemes. Here, we provide a brief review of the inspiring progress in TN-based ML. On the one hand, the interpretability of TN ML can be accommodated by a solid theoretical foundation based on quantum information and many-body physics. On the other hand, high efficiency can be obtained from powerful TN representations and the advanced computational techniques developed in quantum many-body physics. Keeping pace with the rapid development of quantum computers, TNs are expected to produce novel schemes runnable on quantum hardware in the direction of "quantum artificial intelligence" in the near future.
引用
收藏
页数:12
相关论文
共 187 条
[1]  
ACKLEY DH, 1985, COGNITIVE SCI, V9, P147
[2]   RIGOROUS RESULTS ON VALENCE-BOND GROUND-STATES IN ANTIFERROMAGNETS [J].
AFFLECK, I ;
KENNEDY, T ;
LIEB, EH ;
TASAKI, H .
PHYSICAL REVIEW LETTERS, 1987, 59 (07) :799-802
[3]   VALENCE BOND GROUND-STATES IN ISOTROPIC QUANTUM ANTIFERROMAGNETS [J].
AFFLECK, I ;
KENNEDY, T ;
LIEB, EH ;
TASAKI, H .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 115 (03) :477-528
[4]   Classical versus quantum: Comparing tensor-network-based quantum circuits on Large Hadron Collider data [J].
Araz, Jack Y. ;
Spannowsky, Michael .
PHYSICAL REVIEW A, 2022, 106 (06)
[5]   Quantum supremacy using a programmable superconducting processor [J].
Arute, Frank ;
Arya, Kunal ;
Babbush, Ryan ;
Bacon, Dave ;
Bardin, Joseph C. ;
Barends, Rami ;
Biswas, Rupak ;
Boixo, Sergio ;
Brandao, Fernando G. S. L. ;
Buell, David A. ;
Burkett, Brian ;
Chen, Yu ;
Chen, Zijun ;
Chiaro, Ben ;
Collins, Roberto ;
Courtney, William ;
Dunsworth, Andrew ;
Farhi, Edward ;
Foxen, Brooks ;
Fowler, Austin ;
Gidney, Craig ;
Giustina, Marissa ;
Graff, Rob ;
Guerin, Keith ;
Habegger, Steve ;
Harrigan, Matthew P. ;
Hartmann, Michael J. ;
Ho, Alan ;
Hoffmann, Markus ;
Huang, Trent ;
Humble, Travis S. ;
Isakov, Sergei V. ;
Jeffrey, Evan ;
Jiang, Zhang ;
Kafri, Dvir ;
Kechedzhi, Kostyantyn ;
Kelly, Julian ;
Klimov, Paul V. ;
Knysh, Sergey ;
Korotkov, Alexander ;
Kostritsa, Fedor ;
Landhuis, David ;
Lindmark, Mike ;
Lucero, Erik ;
Lyakh, Dmitry ;
Mandra, Salvatore ;
McClean, Jarrod R. ;
McEwen, Matthew ;
Megrant, Anthony ;
Mi, Xiao .
NATURE, 2019, 574 (7779) :505-+
[6]   Quantum state preparation protocol for encoding classical data into the amplitudes of a quantum information processing register's wave function [J].
Ashhab, Sahel .
PHYSICAL REVIEW RESEARCH, 2022, 4 (01)
[7]   Unsupervised Recognition of Informative Features via Tensor Network Machine Learning and Quantum Entanglement Variations [J].
Bai, Sheng-Chen ;
Tang, Yi-Cheng ;
Ran, Shi-Ju .
CHINESE PHYSICS LETTERS, 2022, 39 (10)
[8]   Generalization in Quantum Machine Learning: A Quantum Information Standpoint [J].
Banchi, Leonardo ;
Pereira, Jason ;
Pirandola, Stefano .
PRX QUANTUM, 2021, 2 (04)
[9]   Matrix Product States for Dynamical Simulation of Infinite Chains [J].
Banuls, M. C. ;
Hastings, M. B. ;
Verstraete, F. ;
Cirac, J. I. .
PHYSICAL REVIEW LETTERS, 2009, 102 (24)
[10]   USING MUTUAL INFORMATION FOR SELECTING FEATURES IN SUPERVISED NEURAL-NET LEARNING [J].
BATTITI, R .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1994, 5 (04) :537-550