Extensions of Brunn-Minkowski's inequality to multiple matrices

被引:0
|
作者
Li Y. [1 ]
Feng L. [2 ]
机构
[1] School of Mathematics, Hunan University, Changsha, 410082, Hunan
[2] School of Mathematics and Statistics, Central South University, New Campus, Changsha, 410083, Hunan
基金
中国国家自然科学基金;
关键词
Brunn-Minkowski inequality; Determinantal inequality; Numerical range in a sector; Positive semidefinite;
D O I
10.1016/j.laa.2020.05.037
中图分类号
学科分类号
摘要
In 2007, Yuan and Leng gave a generalization of Ky Fan's determinantal inequality, which is a refinement of the fundamental Brunn-Minkowski inequality (det⁡(A+B))1/n≥(det⁡A)1/n+(det⁡B)1/n, where A and B are positive semidefinite matrices. In this paper, we first give an extension of Yuan-Leng's result to multiple positive definite matrices, and we further extend the result to a larger class of matrices whose numerical ranges are contained in a sector. Our result improves a recent result of Liu (2016) [16]. © 2020 Elsevier Inc.
引用
收藏
页码:91 / 100
页数:9
相关论文
共 50 条
  • [1] Extensions of Brunn-Minkowski's inequality to multiple matrices
    Li, Yongtao
    Feng, Lihua
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 603 : 91 - 100
  • [2] The Brunn-Minkowski inequality
    Gardner, RJ
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 39 (03) : 355 - 405
  • [3] THE φ-BRUNN-MINKOWSKI INEQUALITY
    Lv, S. -J.
    ACTA MATHEMATICA HUNGARICA, 2018, 156 (01) : 226 - 239
  • [4] Brunn-Minkowski Inequality
    Alonso-Gutierrez, David
    Bastero, Jesus
    APPROACHING THE KANNAN-LOVASZ-SIMONOVITS AND VARIANCE CONJECTURES, 2015, 2131 : 137 - 146
  • [5] The Brunn-Minkowski inequality, Minkowski's first inequality, and their duals'
    Gardner, RJ
    Vassallo, S
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 245 (02) : 502 - 512
  • [6] A nonabelian Brunn-Minkowski inequality
    Jing, Yifan
    Tran, Chieu-Minh
    Zhang, Ruixiang
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2023, 33 (04) : 1048 - 1100
  • [7] Refinements of the Brunn-Minkowski Inequality
    Hernandez Cifre, Maria A.
    Yepes Nicolas, Jesus
    JOURNAL OF CONVEX ANALYSIS, 2014, 21 (03) : 727 - 743
  • [8] Companions to the Brunn-Minkowski inequality
    Niezgoda, Marek
    POSITIVITY, 2025, 29 (01)
  • [9] Generalizations of the Brunn-Minkowski inequality
    Liu, Juntong
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 508 : 206 - 213
  • [10] The Dual φ-Brunn-Minkowski Inequality
    Shi, Wei
    Li, Tian
    Wang, Weidong
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (05)