ON APPROXIMATE POSITIVELY PROPERLY EFFICIENT SOLUTIONS IN NONSMOOTH SEMI-INFINITE MULTIOBJECTIVE OPTIMIZATION PROBLEMS WITH DATA UNCERTAINTY

被引:0
作者
Pham, Thanh-Hung [1 ]
机构
[1] Faculty of Pedagogy and Faculty of Social Sciences & Humanities, Kien Giang University, Chau Thanh, Kien Giang
来源
Journal of Applied and Numerical Optimization | 2024年 / 6卷 / 02期
关键词
Duality theorem; Efficient solution; Generalized convexity; Optimality condition; Semiinfinite multiobjective optimization problem;
D O I
10.23952/jano.6.2024.2.07
中图分类号
学科分类号
摘要
In this paper, we exploit necessary/sufficient optimality conditions for ε-quasi positively properly efficient solutions of the semi-infinite multiobjective optimization problems with data uncertainty. We also consider Wolfe type dual problems/Mond–Weir type dual problems under the assumptions of generalized convexity. Finally, several illustrative examples are also provided. © 2024 Journal of Applied and Numerial Optimization.
引用
收藏
页码:271 / 289
页数:18
相关论文
共 44 条
[1]  
Chuong T.D., Kim D.S., Nonsmooth semi-infinite multiobjective optimization problems, J. Optim. Theory Appl., 160, pp. 748-762, (2014)
[2]  
Chuong T.D., Nondifferentiable fractional semi-infinite multiobjective optimization problems, Oper. Res. Lett., 44, pp. 260-266, (2016)
[3]  
Kanzi N., Nobakhtian S., Optimality conditions for nonsmooth semi-infinite multiobjective programming, Optim. Lett., 8, pp. 1517-1528, (2014)
[4]  
Kanzi N., On strong KKT optimality conditions for multiobjective semi-infinite programming problems with Lipschitzian data, Optim. Lett., 9, pp. 1121-1129, (2015)
[5]  
Tung L.T., Karush–Kuhn–Tucker optimality conditions and duality for multiobjective semi-infinite programming via tangential subdifferentials, Numer. Funct. Anal. Optim., 41, pp. 659-684, (2020)
[6]  
Tung L.T., Strong Karush–Kuhn–Tucker optimality conditions for Borwein properly efficient solutions of multiobjective semi-infinite programming, Bull. Braz. Math. Soc., 52, pp. 1-22, (2021)
[7]  
Jiao L.G., Dinh B.V., Kim D.S., Yoon M., Mixed type duality for a class of multiple objective optimization problems with an infinite number of constraints, J. Nonlinear Convex Anal., 21, pp. 49-61, (2020)
[8]  
Lee J.H., Lee G.M., On optimality conditions and duality theorems for robust semi-infinite multiobjective optimization problems, Ann. Oper. Res., 269, pp. 419-438, (2018)
[9]  
Thuy N.T.T., Su T.V., Robust optimality conditions and duality for nonsmooth multiobjective fractional semiinfinite programming problems with uncertain data, Optimization, 72, pp. 1745-1775, (2023)
[10]  
Wang J., Li S.J., Chen C.R., Robust nonsmooth optimality conditions for multiobjective optimization problems with infinitely many uncertain constraints, Optimization, 72, 2023, pp. 2039-2067, (2022)