Metasurface-based conformal linear-to-circular polarization converter for emerging wireless applications

被引:3
作者
Yadav V.S. [1 ]
Kundu D. [2 ]
Kaushik B.K. [1 ]
Patnaik A. [1 ]
机构
[1] Department of Electronics and Communication Engineering, Indian Institute of Technology Roorkee, Roorkee
[2] Department of Electronics and Communication Engineering, Indraprastha Institute of Information Technology Delhi, New Delhi
来源
Optik | 2024年 / 296卷
关键词
Conformal; Linear-to-circular polarization (LCP) converter; Metasurfaces; Unit cell;
D O I
10.1016/j.ijleo.2023.171553
中图分类号
学科分类号
摘要
This paper proposes the analysis and design aspects of a metasurface-based reflective type linear-to-circular polarization (LCP) converter in both planar and conformal profiles. The metasurface unit cell consists of a diagonally placed split circular metallic ring on top of a metal backed dielectric substrate. The structure provides LCP conversion with axial ratio (AR) < 3 dB at two frequency bands, which are 27.38–28.61 GHz and 33.1–52 GHz corresponding to fractional bandwidths of 4.4% and 44.5%, respectively. It exhibits two different handedness at the aforementioned two bands for a TE (or TM) linearly polarized incident wave. Moreover, it shows dual polarized and angularly stable (up to 25°) characteristics. It is observed from the far-field characteristics that the LCP converter with an array of 29 × 29 unit cells (12λ ×12λ) produces peak gain of 26 dBi, cross polarization level 20 dB below the maximum main lobe level when illuminated by a linearly polarized source at far-field. Subsequently, the same unit cell is used to design a cylindrical conformal metasurface with different radius of curvatures (r). It provides quite stable AR, gain and radiation patterns till r=100 mm. The array has been fabricated to experimentally validate the numerical results of both the planar and conformal geometries. © 2023 Elsevier GmbH
引用
收藏
相关论文
共 31 条
[1]  
Doumanis E., Goussetis G., Gomez-Tornero J.L., Cahill R., Fusco V., Anisotropic impedance surfaces for linear to circular polarization conversion, IEEE Trans. Antennas Propag., 60, 1, pp. 212-219, (2012)
[2]  
Naseri P., Matos S.A., Costa J.R., Fernandes C.A., Fonseca N.J.G., Dual-band dual-linear-to-circular polarization converter in transmission mode application to K/Ka-band satellite communications, IEEE Trans. Antennas and Propagation, 66, 12, pp. 7128-7137, (2018)
[3]  
Nama L., Nilotpal S.A., Bhattacharyya S., Jain P.K., A metasurface-based, ultrathin, dual-band, linear-to-circular, reflective polarization converter: Easing uplinking and downlinking for wireless communication, IEEE Antennas Propag. Mag., 63, 4, pp. 100-110, (2021)
[4]  
Miao Z.-W., Hao Z.-C., Yuan Q., A passive circularly polarized van atta reflector for vehicle radar applications, IEEE Antennas Wirel. Propag. Lett., 16, pp. 2254-2257, (2017)
[5]  
Euler M., Fusco V., Cahill R., Dickie R., 325 GHz single layer sub-millimeter wave FSS based split slot ring linear to circular polarization convertor, IEEE Trans. Antennas and Propagation, 58, 7, pp. 2457-2459, (2010)
[6]  
Imani M.F., Gollub J.N., Yurduseven O., Diebold A.V., Boyarsky M., Fromenteze T., Pulido-Mancera L., Sleasman T., Smith D.R., Review of metasurface antennas for computational microwave imaging, IEEE Trans. Antennas Propag., 68, 3, pp. 1860-1875, (2020)
[7]  
Dietlein C., Luukanen A., Popovi Z., Grossman E., A W-band polarization converter and isolator, IEEE Trans. Antennas and Propagation, 55, 6, pp. 1804-1809, (2007)
[8]  
Qin P., Li E., Li T., Ma H., Yang Y., Ang L.K., Chen H., Angle-insensitive toroidal metasurface for high-efficiency sensing, IEEE Trans. Microw. Theory Tech., 69, 3, pp. 1511-1517, (2020)
[9]  
Liang Y., Tan Q., Zhou W., Zhou X., Wang Z., Zhou G., Huang X., Refractive index sensing utilizing tunable polarization conversion efficiency with dielectric metasurface, J. Lightwave Technol., 39, 2, pp. 682-687, (2021)
[10]  
Amin M., Siddiqui O., Farhat M., Polarization-state modulation in Fano resonant graphene metasurface reflector, J. Lightwave Technol., 39, 24, pp. 7869-7875, (2021)