Gemini/GNIRS infrared spectroscopy of theWolf-Rayet stellar wind in Cygnus X-3

被引:0
作者
Koljonen K.I.I. [1 ,2 ,3 ]
Maccarone T.J. [4 ]
机构
[1] Finnish Centre for Astronomy with ESO (FINCA), University of Turku, Väisäläntie 20, Piikkiö
[2] Aalto University Metsähovi Radio Observatory, P.O. Box 13000, Aalto
[3] New York University Abu Dhabi, PO Box 129188, Abu Dhabi
[4] Department of Physics and Astronomy, Texas Tech University, Box 41051, Lubbock, 79409-1051, TX
来源
Koljonen, K.I.I. (karri.koljonen@utu.fi) | 1600年 / Oxford University Press卷 / 472期
基金
美国国家科学基金会;
关键词
Binaries: close; Infrared: stars; Line: profiles; Stars: individual: Cyg X-3; Stars:; winds; outflows; Stars: Wolf-Rayet;
D O I
10.1093/MNRAS/STX2106
中图分类号
学科分类号
摘要
The microquasar Cygnus X-3 was observed several times with the Gemini North Infrared Spectrograph while the source was in the hard X-ray state. We describe the observed 1.0-2.4 μm spectra as arising from the stellar wind of the companion star and suggest its classification as a WN 4-6 Wolf-Rayet star. We attribute the orbital variations of the emission line profiles to the variations in the ionization structure of the stellar wind caused by the intense X-ray emission from the compact object. The strong variability observed in the line profiles will affect the mass function determination.We are unable to reproduce earlier results, from which the mass function for the Wolf-Rayet star was derived. Instead, we suggest that the system parameters are difficult to obtain from the infrared spectra. We find that the near-infrared continuum and the line spectra can be represented with non-LTE Wolf-Rayet atmosphere models if taking into account the effects arising from the peculiar ionization structure of the stellar wind in an approximative manner. From the representative models we infer the properties of theWolf-Rayet star and discuss possible mass ranges for the binary components. © 2018 The Author(s).
引用
收藏
页码:2181 / 2195
页数:14
相关论文
共 71 条
  • [1] Bagot P., A&A, 314, (1996)
  • [2] Becklin E.E., Neugebauer G., Hawkins F.J., Mason K.O., Sanford P.W., Matthews K., Wynn-Williams C.G., Nature, 245, (1973)
  • [3] Becklin E.E., Et al., ApJ, 192, (1974)
  • [4] Belczynski K., Bulik T., Mandel I., Sathyaprakash B.S., Zdziarski A.A., Mikolajewska J., ApJ, 764, (2013)
  • [5] Bessell M.S., Castelli F., Plez B., A&A, 333, (1998)
  • [6] Binder B., Williams B.F., Eracleous M., Garcia M.R., Anderson S.F., Gaetz T.J., ApJ, 742, (2011)
  • [7] Binder B., Gross J., Williams B.F., Simons D., MNRAS, 451, (2015)
  • [8] Bloom J.S., Starr D.L., Blake C.H., Skrutskie M.F., Falco E.E., ASP Conf. Ser, Astronomical Data Analysis Software and Systems XV, 351, (2006)
  • [9] Carpano S., Pollock A.M.T., Wilms J., Ehle M., Schirmer M., A&A, 461, (2007)
  • [10] Cechura J., Hadrava P., A&A, 575, (2015)