首页
学术期刊
论文检测
AIGC检测
热点
更多
数据
Adaptive finite volume methods for displacement problems in porous media
被引:10
作者
:
Bürkle, David
论文数:
0
引用数:
0
h-index:
0
机构:
Institut für Angewandte Mathematik, Universität Freiburg, Hermann-Herder-Str. 10, 79104 Freiburg, Germany
Institut für Angewandte Mathematik, Universität Freiburg, Hermann-Herder-Str. 10, 79104 Freiburg, Germany
Bürkle, David
[
1
]
Ohlberger, Mario
论文数:
0
引用数:
0
h-index:
0
机构:
Institut für Angewandte Mathematik, Universität Freiburg, Hermann-Herder-Str. 10, 79104 Freiburg, Germany
Institut für Angewandte Mathematik, Universität Freiburg, Hermann-Herder-Str. 10, 79104 Freiburg, Germany
Ohlberger, Mario
[
1
]
机构
:
[1]
Institut für Angewandte Mathematik, Universität Freiburg, Hermann-Herder-Str. 10, 79104 Freiburg, Germany
来源
:
Computing and Visualization in Science
|
2002年
/ 5卷
/ 02期
关键词
:
Finite volume method - Two phase flow - Approximation algorithms;
D O I
:
10.1007/s00791-002-0091-7
中图分类号
:
学科分类号
:
摘要
:
In this paper we consider adaptive numerical simulation of miscible and immiscible displacement problems in porous media, which are modeled by single and two phase flow equations. Using the IMPES formulation of the two phase flow equation both problems can be treated in the same numerical framework. We discretise the equations by an operator splitting technique where the flow equation is approximated by Raviart-Thomas mixed finite elements and the saturation or concentration equation by vertex centered finite volume methods. Using a posteriori error estimates for both approximation schemes we deduce an adaptive solution algorithm for the system of equations and show the applicability in several examples. © Springer-Verlag 2002.
引用
收藏
页码:95 / 106
相关论文
未找到相关数据
未找到相关数据