Barycentric-thiele type blending rational interpolation

被引:0
作者
Jiang, Ping [1 ]
Shi, Manhong [2 ]
机构
[1] School of Mathematics, Hefei University of Technology, Hefei
[2] College of Mathematics, Anhui Science and Technology University, Fengyang
来源
Journal of Information and Computational Science | 2015年 / 12卷 / 05期
关键词
Barycentric rational interpolation; Blending rational interpolation; Partial reciprocal difference; Thiele type continued fraction interpolation;
D O I
10.12733/jics20105556
中图分类号
学科分类号
摘要
In this paper, we construct Barycentric-Thiele type rational interpolation, which is based on Thiele continued fraction interpolation and Barycentric rational interpolation. Compared with Thiele continued fraction interpolation, Barycentric-Thiele type rational interpolation is more accuracy, better numerical stability and smaller calculation cost. While constructing the corresponding Thiele continued fraction interpolation, we can choose the appropriate number of nodes to avoid poles. Finally, the numerical examples are given to verify the correctness and validity of our method. Copyright © 2015 Binary Information Press.
引用
收藏
页码:1731 / 1738
页数:7
相关论文
共 16 条
  • [1] Cuyt A., Verdonk B., Multivariate reciprocal differences for branched Thiele continued fraction expansions, Comput. Appl. Math., 21, pp. 145-160, (1988)
  • [2] Lorentzen L., Waadeland H., Continued Fractions with Applications, (1992)
  • [3] Skorbogatko V., Branched Continued Fractions and Applications, (1983)
  • [4] Zhao Q.J., Tan J.Q., Block based Thiele-like blending rational interpolation, Comput. Appl. Math., 195, pp. 312-325, (2006)
  • [5] Zhao Q.J., Tan J.Q., Block based Largrange Thiele-like blending rational interpolation, Journal of Information Computational Science, 3, pp. 167-177, (2006)
  • [6] Hu M., Tan J.Q., A daptive osculatory rational interpolation for image processing, Comp. Appl. Math., 195, pp. 46-53, (2006)
  • [7] Schneider C., Werner W., Some new aspects of rational interpolation, Mathmatics of Computation, 175, pp. 285-299, (1986)
  • [8] Higham N.J., The numerical stability of barycentric Lagrange interpolation, IMA J. Numer. Anal., 24, pp. 547-556, (2004)
  • [9] Henrici P., Essentials of Numerical Analysis with Pocket Calculator Demonstrations, (1982)
  • [10] Berrut J.P., Trefethen L.N., Barycentric lagrange interpolation, SIAM, 3, pp. 501-517, (2004)