A Novel Compact Conformal 2-D FDFD Method for Modeling Waveports in 3-D FDTD

被引:0
作者
Wang, Kunyi [1 ,2 ]
Zuo, Sheng [1 ,2 ]
Wu, Qingkai [1 ,2 ]
Lin, Zhongchao [1 ,2 ]
Zhang, Yu [1 ,2 ]
Zhao, Xunwang [1 ,2 ]
机构
[1] Xidian Univ, Shaanxi Key Lab Large Scale Electromagnet Comp, Xian 710071, Peoples R China
[2] Xidian Univ, Shaanxi Innovat Ctr High Performance CAE Software, Xian 710071, Peoples R China
来源
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS | 2024年 / 23卷 / 07期
关键词
Finite difference methods; Time-domain analysis; Eigenvalues and eigenfunctions; Mathematical models; Electric fields; Standards; Transmission line matrix methods; Eigenvalue equation; finite-difference frequency-domain (FDFD); finite-difference time-domain (FDTD); simplified conformal (SC) scheme; spectral transformation; FREQUENCY-DOMAIN METHOD;
D O I
10.1109/LAWP.2024.3381969
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A novel compact conformal 2-D finite-difference frequency-domain (FDFD) method is proposed for modeling waveports in the finite-difference time-domain (FDTD) method. To avoid time step reduction, the simplified conformal (SC) scheme is adapted to the standard FDTD formalism. Moreover, under the SC FDTD framework, the SC scheme is extended to the FDFD method to improve the accuracy of waveport mode calculations by solving eigenvalue equation. In order to improve the efficiency and practicality, the eigenvalue equation containing only two transverse electric field components is derived, and a spectral transformation is applied. Several examples including different types of waveguide structures are provided to demonstrate the accuracy and efficiency of the proposed method.
引用
收藏
页码:2091 / 2095
页数:5
相关论文
共 11 条
[1]   A new 3-D conformal PEC FDTD scheme with user-defined geometric precision and derived stability criterion [J].
Benkler, S ;
Chavannes, N ;
Kuster, N .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2006, 54 (06) :1843-1849
[2]   A Conformal FDTD Method With Accurate Waveport Excitation and S-Parameter Extraction [J].
Chen, Guanbo ;
Stang, John ;
Moghaddam, Mahta .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2016, 64 (10) :4504-4509
[3]  
CHOI DH, 1986, IEEE T MICROW THEORY, V34, P1464, DOI 10.1109/TMTT.1986.1133564
[4]   FULL-WAVE ANALYSIS OF DIELECTRIC WAVE-GUIDES USING TANGENTIAL VECTOR FINITE-ELEMENTS [J].
LEE, JF ;
SUN, DK ;
CENDES, ZJ .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1991, 39 (08) :1262-1271
[5]  
Lehoucq R.B., 1998, ARPACK USERS GUIDE S
[6]   An improved compact 2-D finite-difference frequency-domain method for guided wave structures [J].
Li, LY ;
Mao, JF .
IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2003, 13 (12) :520-522
[7]  
Man-Leung Lui, 1999, 1999 International Conference on Computational Electromagnetics and its Applications. Proceedings (ICCEA'99) (IEEE Cat. No.99EX374), P78, DOI 10.1109/ICCEA.1999.825072
[8]   Full-wave analysis of guided wave structures using a novel 2-D FDTD [J].
Xiao, S. ;
Vahldieck, R. ;
Jin, H. .
IEEE Microwave and Guided Wave Letters, 1992, 2 (05) :165-167
[9]  
YEE KS, 1966, IEEE T ANTENN PROPAG, VAP14, P302
[10]   Conformal FDTD-methods to avoid time step reduction with and without cell enlargement [J].
Zagorodnov, Igor ;
Schuhmann, Rolf ;
Weiland, Thomas .
JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 225 (02) :1493-1507