Resonant feedforward control strategy for LCL-type grid-connected inverters in weak grid condition

被引:0
作者
Xu F. [1 ]
Tang Y. [1 ]
Gu W. [2 ]
机构
[1] Jiangsu Key Laboratory of New Energy Generation and Power Conversion, Nanjing University of Aeronautics & Astronautics, Nanjing, 210016, Jiangsu Province
[2] School of Automation, Southeast University, Nanjing, 210096, Jiangsu Province
来源
Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering | 2016年 / 36卷 / 18期
基金
中国国家自然科学基金;
关键词
Background harmonic; Resonant feedforward control; Stability; Weak grid;
D O I
10.13334/j.0258-8013.pcsee.150608
中图分类号
学科分类号
摘要
Weak grid is commonly seem as a voltage source which contains a gird impedance and background harmonics. The closed-loop control and harmonic voltage feedforward control are coupling with each other because of the existence of grid impedance. Proportion feedforward control strategy will introduce a positive feedback loop, which will worsen the quality of grid current, even threaten the stability of the system. This paper established the model of LCL-type grid-connected inverter, and elaborated the formation mechanism of resonant current under weak grid condition. The resonant feedforward control was proposed to attenuate the response of grid impedance during the resonant frequency band, and also to improve the phase margin and decrease the injected current steady state error. The proposed resonant feedforward control combined harmonic controller strategy was given, which could decrease the steady state error as well as improve the adaptability to grid impedance and low-order harmonics. A 3kW prototype is designed in the lab, and the proposed control strategy is verified by experiments. © 2016 Chin. Soc. for Elec. Eng.
引用
收藏
页码:4970 / 4979
页数:9
相关论文
共 17 条
[1]  
Zhou L., Zhang M., Ju X., Et al., Stability analysis of large-scale photovoltaic plants due to grid impedances, Proceedings of the CSEE, 33, 34, pp. 34-41, (2013)
[2]  
Marco L., Remus T., Frede B., Stability of photovoltaic and wind turbine grid-connected inverters for a large set of grid impedance values, IEEE Transactions on Power Electronics, 21, 1, pp. 263-272, (2006)
[3]  
Xu J., Xie S., Xiao H., Research on control mechanism of active damping for LCL filters, Proceedings of the CSEE, 32, 9, pp. 27-33, (2012)
[4]  
Blaabjerg F., Teodorescu R., Liserre M., Et al., Overview of control and grid synchronization for distributed power generation systems, IEEE Transactions on Power Electronics, 53, 5, pp. 1398-1409, (2006)
[5]  
Sun J., Impedance-based stability criterion for gridconnected inverters, IEEE Transactions on Power Electronics, 26, 11, pp. 3075-3078, (2011)
[6]  
Wang X., Ruan X., Liu S., Control strategy for grid-connected inverter to suppress current distortion effected by background harmonics in grid voltage, Proceedings of the CSEE, 31, 6, pp. 7-14, (2011)
[7]  
Mohamed Y., Suppression of low-and high-frequency instabilities and grid-induced disturbances in distributed generation inverters, IEEE Transactions on Power Electronics, 16, 12, pp. 3790-3803, (2011)
[8]  
Zheng X., Xiao L., Wang C., Et al., A new parameter optimization method of LCL filters in three phase converters, Proceedings of the CSEE, 33, 12, pp. 55-63, (2013)
[9]  
Chen X., Zhang Y., Wang Y., A study of dynamic interaction between PV grid-connected inverters and grid based on the impedance analysis method, Proceedings of the CSEE, 34, 27, pp. 4559-4566, (2014)
[10]  
Timbus A., Liserre M., Teodorescu R., Et al., Evaluation of current controllers for distributed power generation systems, IEEE Trans. on Power Electronics, 4, 3, pp. 654-664, (2009)