Numerical study of the flame acceleration mechanisms of a lean hydrogen/air deflagration in an obstructed channel

被引:5
|
作者
Ramirez, Francis Adrian Meziat [1 ,2 ]
Vanbersel, Benjamin [1 ]
Dounia, Omar [1 ]
Jaravel, Thomas [1 ]
Douasbin, Quentin [1 ]
Vermorel, Olivier [1 ]
机构
[1] CERFACS, 42 Ave G Coriolis, F-31057 Toulouse 01, France
[2] Air Liquide, Paris Innovat Campus,1 Chemin Porte Loges, F-78354 Les Loges En Josas, France
关键词
Flame acceleration; Large Eddy Simulation; Explosion; Safety; Lean hydrogen; Combustion; LARGE-EDDY SIMULATION; PREMIXED TURBULENT COMBUSTION; TO-DETONATION TRANSITION; MIXTURES; AIR; PROPAGATION; CHAMBER; LES; EXPLOSIONS; SQUARE;
D O I
10.1016/j.ijhydene.2024.09.230
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this study, a three-dimensional, high fidelity LES of a fully premixed, lean hydrogen-air deflagration, in a confined and obstructed channel is performed. The experimental configuration studied is the GraVent explosion channel (L. Boeck et al., Shock Waves, 2016). A complete methodology to perform LES of lean hydrogen, strongly compressible deflagrations is presented. The capability of LES to quantitatively reproduce the main Flame Acceleration (FA) mechanisms of the fast deflagration is illustrated. The physics of FA are analysed and the contribution of the unburnt mixture flow aerodynamics to the absolute flame propagation speed, is evaluated. This is made possible by the access to the complete reactive flow fields, which are not available in the experiments. It is shown that the flow contraction, at fence-type obstacles, and the flame/vortex interaction, between the flame front and the turbulent structures in the wake of the obstacles, interact constructively, driving FA.
引用
收藏
页码:224 / 232
页数:9
相关论文
共 50 条
  • [1] Modeling of non-homogeneous premixed hydrogen-air flame acceleration and deflagration to detonation transition in an obstructed channel
    Sheng, Zhonghua
    Yang, Guogang
    Gao, Wei
    Li, Shian
    Shen, Qiuwan
    Sun, Han
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 50 : 1209 - 1222
  • [2] Flame acceleration and onset of detonation in inhomogeneous mixture of hydrogen-air in an obstructed channel
    Zhao, Xinyu
    Wang, Jiabao
    Gao, Longkun
    Wang, Xujiang
    Zhu, Yuejin
    AEROSPACE SCIENCE AND TECHNOLOGY, 2022, 130
  • [3] Flame kinetic behavior of premixed hydrogen-air explosion in an obstructed channel
    Sheng, Zhonghua
    Yang, Guogang
    Li, Shian
    Shen, Qiuwan
    Sun, Han
    Xu, Zhuangzhuang
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2024, 46 (01) : 3007 - 3022
  • [4] Numerical simulation of flame acceleration and deflagration-to-detonation transition of ethylene in channels
    Wang, Cheng
    Zhao, Yongyao
    Zhang, Bo
    JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, 2016, 43 : 120 - 126
  • [5] Experimental and numerical investigation of the effect of end venting on flame acceleration in an obstructed channel
    Yanez, Jorge
    Lelyakin, Alexander
    Jordan, Thomas
    Alekseev, Victor
    Kuznetsov, Mike
    SCIENCE AND TECHNOLOGY OF ENERGETIC MATERIALS, 2011, 72 (3-4) : 86 - 89
  • [6] Modeling the initial flame acceleration in an obstructed channel using large eddy simulation
    Johansen, C.
    Ciccarelli, G.
    JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, 2013, 26 (04) : 571 - 585
  • [7] Flame acceleration and deflagration-to-detonation transition in hydrogen-air mixture in a channel with an array of obstacles of different shapes
    Xiao, Huahua
    Oran, Elaine S.
    COMBUSTION AND FLAME, 2020, 220 (378-393) : 378 - 393
  • [8] Numerical simulation of flame acceleration and deflagration to detonation transition in hydrogen-air mixture
    Heidari, A.
    Wen, J. X.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (36) : 21317 - 21327
  • [9] Impact of stratification and global mixture properties on flame acceleration: A numerical study
    Mur, Eric Matas
    Dounia, Omar
    Vermorel, Olivier
    Douasbin, Quentin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2025, 101 : 1267 - 1278
  • [10] Numerical study of hydrogen-oxygen flame acceleration and deflagration to detonation transition in combustion light gas gun
    Zhou, Fei
    Liu, Ning
    Zhang, Xiangyan
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (10) : 5405 - 5414