共 136 条
[1]
Yang X.-S., Nature-inspired optimization algorithms: Challenges and open problems, Journal of Computational Science, 46, (2020)
[2]
Roger Jang J.-S., ANFIS: Adaptive-network-based fuzzy inference system, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 23, 3, (1993)
[3]
Rajab S., Handling interpretability issues in ANFIS using rule base simplification and constrained learning, Fuzzy Sets and Systems, 368, pp. 36-58, (2019)
[4]
Najib M., Salleh M., Talpur N., Hussain K., Adaptive neuro-fuzzy inference system: Overview, strengths, limitations, and solutions, Data Mining and Big Data,Lecture Notes in Computer Science, pp. 527-535, (2017)
[5]
Azad A., Farzin S., Sanikhani H., Karami H., Kisi O., Singh V.P., Approaches for optimizing the performance of adaptive neuro-fuzzy inference system and least-squares support vector machine in precipitation modeling, Journal of Hydrologic Engineering, 26, 4, (2021)
[6]
Azad A., Kashi H., Farzin S., Singh V.P., Kisi O., Karami H., Sanikhani H., Novel approaches for air temperature prediction: A comparison of four hybrid evolutionary fuzzy models, Meteorological Applications, 27, 1, (2019)
[7]
Azad A., Manoochehri M., Kashi H., Farzin S., Karami H., Nourani V., Shiri J., Comparative evaluation of intelligent algorithms to improve adaptive neuro-fuzzy inference system performance in precipitation modelling, Journal of Hydrology, 571, pp. 214-224, (2019)
[8]
Kisi O., Azad A., Kashi H., Saeedian A., Hashemi S.A.A., Ghorbani S., Modeling groundwater quality parameters using hybrid neuro-fuzzy methods, Water Resources Management, 33, 2, pp. 847-861, (2019)
[9]
Budgen D., Brereton P., Performing Systematic Literature Reviews in Software Engineering
[10]
Karaboga D., Kaya E., Training ANFIS Using Artificial Bee Colony Algorithm for Nonlinear Dynamic Systems Identification, pp. 493-496