SkinHealthMate app: An AI-powered digital platform for skin disease diagnosis

被引:1
作者
Aboulmira, Amina [1 ]
Hrimech, Hamid [1 ]
Lachgar, Mohamed [2 ,3 ,4 ]
Camara, Aboudramane [4 ,5 ]
Elbahja, Charafeddine [4 ,5 ]
Elmansouri, Amine [5 ]
Hassini, Yassine [5 ]
机构
[1] Hassan 1er Univ, LAMSAD Lab, ENSA, Berrechid, Morocco
[2] Univ Cadi Ayyad, Fac Sci & Technol, L2IS Lab, Marrakech, Morocco
[3] Univ Cadi Ayyad, Higher Normal Sch, Dept Comp Sci, Marrakech, Morocco
[4] Chouaib Doukkali Univ, LTI Lab, ENSA, El Jadida, Morocco
[5] Chouaib Doukkali Univ, IITE, ENSA, El Jadida, Morocco
来源
SYSTEMS AND SOFT COMPUTING | 2024年 / 6卷
关键词
Artificial intelligence; Dermatology ensemble learning; Skin disease classification; Digital health platforms; CLASSIFICATION; DERMOSCOPY;
D O I
10.1016/j.sasc.2024.200166
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Accurate diagnosis of skin diseases remains a significant challenge due to the inherent limitations of traditional visual and manual examination methods. These conventional approaches, while essential to dermatological practice, are prone to misdiagnoses and delays in treatment, particularly for conditions like skin cancer. To address these gaps, this paper presents the SkinHealth App, an innovative AI-driven solution that enhances the accuracy and efficiency of skin disease diagnosis. The app integrates a robust ensemble learning model, combining the strengths of EfficientNetB1 and EfficientNetB5 architectures. This ensemble model improves disease classification performance through advanced image processing techniques such as noise reduction and data augmentation. The key contributions of this work include the development of a scalable and secure serverside structure that ensures the safe handling of patient data and efficient processing of diagnostic queries. Experimental results on the HAM10000 dataset demonstrate the model's superior performance, achieving an accuracy of 93%, along with high precision and recall scores, thereby reducing false positives and false negatives. These outcomes clearly establish the app's potential to enhance dermatological diagnosis by providing timely and accurate disease identification. Ultimately, this work bridges the gap between traditional diagnostic methods and modern AI-driven technology, offering a transformative tool for improving patient care in dermatology.
引用
收藏
页数:13
相关论文
共 37 条
  • [1] Comparative Study of Multiple CNN Models for Classification of 23 Skin Diseases
    Aboulmira, Amina
    Hrimech, Hamid
    Lachgar, Mohamed
    [J]. INTERNATIONAL JOURNAL OF ONLINE AND BIOMEDICAL ENGINEERING, 2022, 18 (11) : 127 - 142
  • [2] Dermoscopy features of melanoma incognito: Indications for biopsy
    Argenziano, Giuseppe
    Zalaudek, Iris
    Ferrara, Gerardo
    Johr, Robert
    Langford, David
    Puig, Susana
    Soyer, H. Peter
    Malvehy, Josep
    [J]. JOURNAL OF THE AMERICAN ACADEMY OF DERMATOLOGY, 2007, 56 (03) : 508 - 513
  • [3] Deep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image classification task
    Brinker, Titus J.
    Hekler, Achim
    Enk, Alexander H.
    Klode, Joachim
    Hauschild, Axel
    Berking, Carola
    Schilling, Bastian
    Haferkamp, Sebastian
    Schadendorf, Dirk
    Holland-Letz, Tim
    Utikal, Jochen S.
    von Kalle, Christof
    [J]. EUROPEAN JOURNAL OF CANCER, 2019, 113 : 47 - 54
  • [4] Machine learning applications to clinical decision support in neurosurgery: an artificial intelligence augmented systematic review
    Buchlak, Quinlan D.
    Esmaili, Nazanin
    Leveque, Jean-Christophe
    Farrokhi, Farrokh
    Bennett, Christine
    Piccardi, Massimo
    Sethi, Rajiv K.
    [J]. NEUROSURGICAL REVIEW, 2020, 43 (05) : 1235 - 1253
  • [5] Machine Learning in Dermatology: Current Applications, Opportunities, and Limitations
    Chan, Stephanie
    Reddy, Vidhatha
    Myers, Bridget
    Thibodeaux, Quinn
    Brownstone, Nicholas
    Liao, Wilson
    [J]. DERMATOLOGY AND THERAPY, 2020, 10 (03) : 365 - 386
  • [6] A survey on ensemble learning
    Dong, Xibin
    Yu, Zhiwen
    Cao, Wenming
    Shi, Yifan
    Ma, Qianli
    [J]. FRONTIERS OF COMPUTER SCIENCE, 2020, 14 (02) : 241 - 258
  • [7] What is AI? Applications of artificial intelligence to dermatology
    Du-Harpur, X.
    Watt, F. M.
    Luscombe, N. M.
    Lynch, M. D.
    [J]. BRITISH JOURNAL OF DERMATOLOGY, 2020, 183 (03) : 423 - 430
  • [8] Dermatologist-level classification of skin cancer with deep neural networks
    Esteva, Andre
    Kuprel, Brett
    Novoa, Roberto A.
    Ko, Justin
    Swetter, Susan M.
    Blau, Helen M.
    Thrun, Sebastian
    [J]. NATURE, 2017, 542 (7639) : 115 - +
  • [9] Gerke S, 2020, Artificial Intelligence in Healthcare, P295, DOI [10.1016/b978-0-12-818438-7.00012-5, DOI 10.1016/B978-0-12-818438-7.00012-5, 10.1016/B978-0-12-818438-7.00012-5]
  • [10] Goceri Evgin, 2020, 2020 IEEE 4th International Conference on Image Processing, Applications and Systems (IPAS), P138, DOI 10.1109/IPAS50080.2020.9334956