THE QUENCHING BEHAVIOR OF A SEMILINEAR HEAT EQUATION WITH A SINGULAR BOUNDARY OUTFLUX

被引:2
作者
Selcuk, Burhan [1 ]
Ozalp, Nuri [2 ]
机构
[1] Karabuk Univ, Dept Comp Engn, TR-78050 Baliklarkayasi Mevkii, Turkey
[2] Ankara Univ, Dept Math, TR-06100 Besevler, Turkey
关键词
Semilinear heat equation; singular boundary outflux; quenching; quenching point; quenching time; maximum principles; PARABOLIC PROBLEMS;
D O I
10.1090/S0033-569X-2014-01367-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the quenching behavior of the solution of a semilinear heat equation with a singular boundary outflux. We prove a finite-time quenching for the solution. Further, we show that quenching occurs on the boundary under certain conditions and we show that the time derivative blows up at a quenching point. Finally, we get a quenching rate and a lower bound for the quenching time.
引用
收藏
页码:747 / 752
页数:6
相关论文
共 19 条
[1]  
Chan C. Y., 1992, WORLD C NONL AN 92 T, VI-IV, P427
[2]  
Chan C.Y., 1996, P DYNAMIC SYSTEMS AP, V2, P107
[3]   Quenching for a degenerate parabolic problem due to a concentrated nonlinear source [J].
Chan, CY ;
Jiang, XO .
QUARTERLY OF APPLIED MATHEMATICS, 2004, 62 (03) :553-568
[4]   Parabolic problems with nonlinear absorptions and releases at the boundaries [J].
Chan, CY ;
Yuen, SI .
APPLIED MATHEMATICS AND COMPUTATION, 2001, 121 (2-3) :203-209
[5]  
CHAN CY, 1995, WORLD SCI SER APPL A, V4
[6]   Quenching for a nonlinear diffusion equation with a singular boundary condition [J].
Deng, K ;
Xu, MX .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1999, 50 (04) :574-584
[7]  
DENG K, 2003, COMM APPL ANAL, V7
[8]   Existence, uniqueness, and quenching properties of solutions for degenerate semilinear parabolic problems with second boundary conditions [J].
Dyakevich, Nadejda E. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 338 (02) :892-901
[9]   QUENCHING ON THE BOUNDARY [J].
FILA, M ;
LEVINE, HA .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1993, 21 (10) :795-802
[10]   Blow-up behavior for a semilinear heat equation with a nonlinear boundary condition [J].
Fu, SC ;
Guo, JS ;
Tsai, JC .
TOHOKU MATHEMATICAL JOURNAL, 2003, 55 (04) :565-581