Visual saliency detection for RGB-D images under a Bayesian framework

被引:2
作者
Wang S. [1 ,2 ]
Zhou Z. [1 ]
Jin W. [2 ]
Qu H. [2 ]
机构
[1] The Higher Educational Key Laboratory for Measuring and Control Technology and Instrumentations of Heilongjiang Province, Harbin University of Science and Technology, Harbin
[2] Res. Center for Artif. Intell. and Big Data Anal., Beijing Academy of Science and Technology, Beijing
关键词
Bayesian fusion; Deep learning; Generative model; RGB-D images; Saliency detection;
D O I
10.1186/s41074-017-0037-0
中图分类号
学科分类号
摘要
In this paper, we propose a saliency detection model for RGB-D images based on the deep features of RGB images and depth images within a Bayesian framework. By analysing 3D saliency in the case of RGB images and depth images, the class-conditional mutual information is computed for measuring the dependence of deep features extracted using a convolutional neural network; then, the posterior probability of the RGB-D saliency is formulated by applying Bayes’ theorem. By assuming that deep features are Gaussian distributions, a discriminative mixed-membership naive Bayes (DMNB) model is used to calculate the final saliency map. The Gaussian distribution parameters can be estimated in the DMNB model by using a variational inference-based expectation maximization algorithm. The experimental results on RGB-D images from the NLPR dataset and NJU-DS400 dataset show that the proposed model performs better than other existing models. © 2018, The Author(s).
引用
收藏
相关论文
共 50 条
[41]   Dynamic Selective Network for RGB-D Salient Object Detection [J].
Wen, Hongfa ;
Yan, Chenggang ;
Zhou, Xiaofei ;
Cong, Runmin ;
Sun, Yaoqi ;
Zheng, Bolun ;
Zhang, Jiyong ;
Bao, Yongjun ;
Ding, Guiguang .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 :9179-9192
[42]   Analysis of Compact Features for RGB-D Visual Search [J].
Petrelli, Alioscia ;
Pau, Danilo ;
Di Stefano, Luigi .
IMAGE ANALYSIS AND PROCESSING - ICIAP 2015, PT II, 2015, 9280 :14-24
[43]   Parallel RCNN: A Deep Learning Method for People Detection Using RGB-D Images [J].
Ren, Xiaodong ;
Du, Sanping ;
Zheng, Yi .
2017 10TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI), 2017,
[44]   RGB-D Saliency Detection Based on Attention Mechanism and Multi-Scale Cross-Modal Fusion [J].
Cui Z. ;
Feng Z. ;
Wang F. ;
Liu Q. .
Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2023, 35 (06) :893-902
[45]   DMRA: Depth-Induced Multi-Scale Recurrent Attention Network for RGB-D Saliency Detection [J].
Ji, Wei ;
Yan, Ge ;
Li, Jingjing ;
Piao, Yongri ;
Yao, Shunyu ;
Zhang, Miao ;
Cheng, Li ;
Lu, Huchuan .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 :2321-2336
[46]   Basic 3D Solid Recognition in RGB-D Images [J].
Kornuta, Tomasz ;
Stefanczyk, Maciej ;
Kasprzak, Wlodzimierz .
RECENT ADVANCES IN AUTOMATION, ROBOTICS AND MEASURING TECHNIQUES, 2014, 267 :421-430
[47]   A Novel perspective invariant feature transform for RGB-D images [J].
Yu, Qinghua ;
Liang, Jie ;
Xiao, Junhao ;
Lu, Huimin ;
Zheng, Zhiqiang .
COMPUTER VISION AND IMAGE UNDERSTANDING, 2018, 167 :109-120
[48]   Feature Calibrating and Fusing Network for RGB-D Salient Object Detection [J].
Zhang, Qiang ;
Qin, Qi ;
Yang, Yang ;
Jiao, Qiang ;
Han, Jungong .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (03) :1493-1507
[49]   Delving into Calibrated Depth for Accurate RGB-D Salient Object Detection [J].
Li, Jingjing ;
Ji, Wei ;
Zhang, Miao ;
Piao, Yongri ;
Lu, Huchuan ;
Cheng, Li .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2023, 131 (04) :855-876
[50]   Delving into Calibrated Depth for Accurate RGB-D Salient Object Detection [J].
Jingjing Li ;
Wei Ji ;
Miao Zhang ;
Yongri Piao ;
Huchuan Lu ;
Li Cheng .
International Journal of Computer Vision, 2023, 131 :855-876