共 15 条
[1]
Zhang J.L., Wang G.W., Shao J.G., Et al., Comprehensive mathematical model and optimum process parameters of nitrogen free blast furnace, J Iron Steel Res Int, 21, 2, (2014)
[2]
Gao C.H., Jian L., Liu X.Y., Et al., Data-driven modeling based on Volterra series for multidimensional blast furnace system, IEEE Trans Neural Networks, 22, 12, (2011)
[3]
Wang Y.K., Liu X.G., Chaotic time series forecasting based on SVM for silicon content in hot metal, Proceedings of the 33rd Chinese Control Conference, (2014)
[4]
Saxen H., Gao C.H., Gao Z.W., Data-driven time discrete models for dynamic prediction of the hot metal silicon content in the blast furnace: a review, IEEE Trans Ind Inf, 9, 4, (2013)
[5]
Tang X.L., Zhuang L., Hu X.D., The support vector regression based on the chaos particle swarm optimization algorithm for the prediction of silicon content in hot metal, Control Theory Appl, 26, 8, (2009)
[6]
Gan L.Z., Sun Z.H., Sun Y.X., Sparse least squares support vector machine, J Zhejiang Univ Eng Sci, 41, 2, (2007)
[7]
Zhou P., Yuan M., Wang H., Et al., Multivariable dynamic modeling for molten iron quality using online sequential random vector functional-link networks with self-feedback connections, Inf Sci, 325, (2015)
[8]
Gan L.Z., Liu H.K., Sun Y.X., Sparse least squares support vector machine for function estimation, Proceedings of the 3rd International Symposium on Neural Networks, (2006)
[9]
Xu Q.F., Zhang J.X., Jiang C.X., Et al., Weighted quantile regression via support vector machine, Expert Syst Appl, 42, 13, (2015)
[10]
Li Y.G., Shen J., Lu J.H., Constrained model predictive control of a solid oxide fuel cell based on genetic optimization, J Power Sources, 196, 14, (2011)