Error-rejecting entanglement purification and concentration for one-dimensional waveguide-emitter system

被引:0
作者
Du, Fang-Fang [1 ]
Li, Ling-Hui [1 ]
Ren, Xue-Mei [1 ]
Wang, Yang-Yang [2 ,3 ]
Liu, Wen-Yao [1 ]
机构
[1] North Univ China, Sci & Technol Elect Test & Measurement Lab, Taiyuan 030051, Peoples R China
[2] Xijing Univ, Shaanxi Engn Res Ctr Controllable Neutron Source, Sch Elect Informat, Xian 710123, Peoples R China
[3] Xijing Univ, Shaanxi Int Joint Res Ctr Appl Technol Controllabl, Sch Elect Informat, Xian 710123, Peoples R China
基金
中国国家自然科学基金;
关键词
quantum communication; the parity check gate; entanglement purification; entanglement concentration; QUANTUM; GATES;
D O I
10.1088/1555-6611/ad7c33
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The distribution of maximal entanglement stands as a pivotal technique in long-distance practical quantum communication. Specifically, achieving high-fidelity entanglement distribution leans upon efficacious entanglement purification and entanglement concentration. In this paper, we materialize error-rejecting nonlocal entanglement purification protocol (EPP) and entanglement concentration protocol (ECP) for solid-state emitter systems assisted by the scattering property of photon-emitter in one-dimensional waveguide. The parity-check gates of both the EPP and ECP can herald the faulty events with the help of the detectors that click, so they are accomplished, in principle, with unity fidelities, which are conducive to implement two protocols. Moreover, additional emitters are unnecessary except a single photon.
引用
收藏
页数:10
相关论文
共 104 条
[1]   The NV metamaterial: Tunable quantum hyperbolic metamaterial using nitrogen vacancy centers in diamond [J].
Ai, Qing ;
Li, Peng-Bo ;
Qin, Wei ;
Zhao, Jie-Xing ;
Sun, C. P. ;
Nori, Franco .
PHYSICAL REVIEW B, 2021, 104 (01)
[2]   Purification of noisy entanglement and faithful teleportation via noisy channels [J].
Bennett, CH ;
Brassard, G ;
Popescu, S ;
Schumacher, B ;
Smolin, JA ;
Wootters, WK .
PHYSICAL REVIEW LETTERS, 1996, 76 (05) :722-725
[3]   Concentrating partial entanglement by local operations [J].
Bennett, CH ;
Bernstein, HJ ;
Popescu, S ;
Schumacher, B .
PHYSICAL REVIEW A, 1996, 53 (04) :2046-2052
[4]   Entanglement concentration of unknown states on separate nitrogen-vacancy centers via error-detected entanglement swapping [J].
Cao, Cong ;
Liu, Xiao-Hu ;
Duan, Yu-Wen ;
Chen, Xi ;
Zhang, Ru .
LASER PHYSICS, 2017, 27 (05)
[5]   A single-photon transistor using nanoscale surface plasmons [J].
Chang, Darrick E. ;
Sorensen, Anders S. ;
Demler, Eugene A. ;
Lukin, Mikhail D. .
NATURE PHYSICS, 2007, 3 (11) :807-812
[6]   Waveguide transport mediated by strong coupling with atoms [J].
Cheng, Mu-Tian ;
Xu, Jingping ;
Agarwal, Girish S. .
PHYSICAL REVIEW A, 2017, 95 (05)
[7]   Measurement-device-independent quantum key distribution with hyper-encoding [J].
Cui, Zheng-Xia ;
Zhong, Wei ;
Zhou, Lan ;
Sheng, Yu-Bo .
SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2019, 62 (11)
[8]   Optimal nonlocal multipartite entanglement concentration based on projection measurements [J].
Deng, Fu-Guo .
PHYSICAL REVIEW A, 2012, 85 (02)
[9]   Quantum privacy amplification and the security of quantum cryptography over noisy channels [J].
Deutsch, D ;
Ekert, A ;
Jozsa, R ;
Macchiavello, C ;
Popescu, S ;
Sanpera, A .
PHYSICAL REVIEW LETTERS, 1996, 77 (13) :2818-2821
[10]   Quantum many-body models with cold atoms coupled to photonic crystals [J].
Douglas, J. S. ;
Habibian, H. ;
Hung, C. -L. ;
Gorshkov, A. V. ;
Kimble, H. J. ;
Chang, D. E. .
NATURE PHOTONICS, 2015, 9 (05) :326-331