Breast Carcinoma Prediction Through Integration of Machine Learning Models

被引:0
|
作者
Martinez-Licort, Rosmeri [1 ]
Leon, Carlos de la Cruz [2 ,3 ]
Agarwal, Deevyankar [2 ]
Sahelices, Benjamin [1 ]
de la Torre, Isabel [2 ]
Miramontes-Gonzalez, Jose Pablo [4 ,5 ]
Amoon, Mohammed [6 ]
机构
[1] Univ Valladolid, Dept Comp Sci, GCME Res Grp, Valladolid 47011, Spain
[2] Univ Valladolid, Dept Signal Theory Commun & Telemat Engn, Valladolid 47011, Spain
[3] CARTIF Technol Ctr, Valladolid 47151, Spain
[4] Univ Valladolid, Fac Med, Dept Med, Valladolid 47005, Spain
[5] Rio Hortega Univ Hosp, Internal Med Serv, Valladolid 47012, Spain
[6] King Saud Univ, Community Coll, Dept Comp Sci, Riyadh 11437, Saudi Arabia
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Support vector machines; Breast cancer; Data models; Training; Accuracy; Principal component analysis; Analytical models; Ensemble learning; Machine learning; ensemble learning; machine learning; majority voting; principal component analysis; CANCER DIAGNOSIS; SCHEME;
D O I
10.1109/ACCESS.2024.3431998
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Breast cancer poses a global health challenge, with high incidence and mortality rates. Early detection and precise diagnosis are crucial for patient prognosis. Machine learning (ML) models applied to mammary biopsy image data hold promise for achieving an efficient and accurate breast cancer diagnosis. In this study, we evaluated the performance of several ML algorithms, including Logistic Regression (LR), Random Forest (RF), Naive Bayes (NB) and Support Vector Machine (SVM). We establish evaluation contexts by implementing data standardization and reducing the correlation between variables. Firstly, we select the best-performing parameters for each algorithm by building and evaluating the individual models. Then, we implement a combined model using weighted voting, where the weights of each model are determined based on its performance on the test dataset. The final model is constructed by combining the LR, RF and SVM models. We find that SVM is the best-performance individual model, so it has the highest weight in the final model. The final integrated model achieves an accuracy of 98%, a precision of 97%, a recall of 99%, an F1-score of 98% and an AUC of 0.98. Our weighted voting model compares favourably with the other models analysed. This approach demonstrates its efficiency and transparency in handling structured medical data. It is a prototype that will be refined and expanded to encompass larger real-world datasets.
引用
收藏
页码:134635 / 134650
页数:16
相关论文
共 50 条
  • [1] Enhancing fairness in breast cancer recurrence prediction through temporal machine learning models
    Sundus, Katrina I.
    Hammo, Bassam H.
    Al-Zoubi, Mohammad B.
    Neural Computing and Applications, 2024, 36 (36) : 22697 - 22718
  • [2] Breast Cancer Prediction using Machine Learning Models
    Iparraguirre-Villanueva, Orlando
    Epifania-Huerta, Andres
    Torres-Ceclen, Carmen
    Ruiz-Alvarado, John
    Cabanillas-Carbonell, Michael
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (02) : 610 - 620
  • [3] Machine learning models in breast cancer survival prediction
    Montazeri, Mitra
    Montazeri, Mohadeseh
    Montazeri, Mahdieh
    Beigzadeh, Amin
    TECHNOLOGY AND HEALTH CARE, 2016, 24 (01) : 31 - 42
  • [4] Improved prediction of biomass gasification models through machine learning
    Sakheta, Aban
    Raj, Thomas
    Nayak, Richi
    O'Hara, Ian
    Ramirez, Jerome
    COMPUTERS & CHEMICAL ENGINEERING, 2024, 191
  • [5] Analysis of breast cancer prediction and visualisation using machine learning models
    Magesh G.
    Swarnalatha P.
    International Journal of Cloud Computing, 2022, 11 (01) : 43 - 60
  • [6] Exploring the Best Machine Learning Models for Breast Cancer Prediction in Wisconsin
    Al Mamun, Abdullah
    Bhuiyan, Touhid
    Hassan, Md Maruf
    Anik, Shahedul Islam
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2025, 16 (01) : 1362 - 1368
  • [7] Enhancing Diabetes Prediction and Prevention through Mahalanobis Distance and Machine Learning Integration
    Dashdondov, Khongorzul
    Lee, Suehyun
    Erdenebat, Munkh-Uchral
    APPLIED SCIENCES-BASEL, 2024, 14 (17):
  • [8] Enhancing Classification and Prediction through the Application of Hybrid Machine Learning Models
    Banda, Misheck
    Ngassam, Ernest Ketcha
    Mnkandla, Ernest
    2024 IST-AFRICA CONFERENCE, 2024,
  • [9] Fast Prediction of Process Variation Band through Machine Learning Models
    Kareem, Pervaiz
    Kwon, Yonghwi
    Cho, Gangmin
    Shin, Youngsoo
    OPTICAL MICROLITHOGRAPHY XXXIV, 2021, 11613
  • [10] Enhancing Loan Approval Prediction through Advanced Machine Learning Models
    Jamunadevi, C.
    Prasath, S.
    Sathishkumar, V. E.
    Pandikumar, S.
    Akshaya, J.
    2ND INTERNATIONAL CONFERENCE ON SUSTAINABLE COMPUTING AND SMART SYSTEMS, ICSCSS 2024, 2024, : 957 - 964