Engineering Homochiral Metal-Organic Frameworks by Spatially Separating 1D Chiral Metal-Peptide Ladders: Tuning the Pore Size for Enantioselective Adsorption

被引:16
作者
Stylianou, Kyriakos C. [1 ]
Gõmez, Laura [2 ,3 ]
Imaz, Inhar [1 ]
Verdugo-Escamilla, Cristõbal [4 ]
Ribas, Xavi [2 ]
Maspoch, Daniel [1 ,5 ]
机构
[1] ICN2 (ICN-CSIC), Institut Catala de Nanociencia i Nanotecnologia, Esfera UAB, Bellaterra
[2] Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Campus Montilivi, Girona, Catalonia
[3] Serveis Tècnics de Recerca (STR), Universitat de Girona, Parc Científic i Tecnològic, Girona
[4] Laboratorio de Estudios Cristalográficos, IACT, CSIC-Universidad de Granada, Av. de las Palmeras 4, Armilla, Granada
[5] Instituciõ Catalana de Recerca i Estudis Avançats (ICREA), Barcelona
关键词
chirality; cobalt; enantioselective separation; metal-organic frameworks; peptides;
D O I
10.1002/chem.201501315
中图分类号
学科分类号
摘要
The reaction of the chiral dipeptide glycyl-L(S)-glutamate with CoII ions produces chiral ladders that can be used as rigid 1D building units. Spatial separation of these building units with linkers of different lengths allows the engineering of homochiral porous MOFs with enhanced pore sizes, pore volumes, and surface areas. This strategy enables the synthesis of a family of isoreticular MOFs, in which the pore size dictates the enantioselective adsorption of chiral molecules (in terms of their size and enantiomeric excess). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
引用
收藏
页码:9964 / 9969
页数:5
相关论文
共 42 条
  • [1] Allendorf M.D., Stavila V., Cryst. Eng. Comm., 17, (2015)
  • [2] Furukawa H., Cordova K.E., Okeeffe M., Yaghi O.M., Science, 341, (2013)
  • [3] Makal T.A., Li J.-R., Lu W., Zhou H.-C., Chem. Soc. Rev., 41, (2012)
  • [4] He Y., Zhou W., Qian G., Chen B., Chem. Soc. Rev., 43, (2014)
  • [5] Majumder M., Sheath P., Mardel J.I., Harvey T.G., Thornton A.W., Gonzago A., Kennedy D.F., Madsen I., Taylor J.W., Turner D.R., Hill M.R., Chem. Mater., 24, (2012)
  • [6] Queen W.L., Hudson M.R., Bloch E.D., Mason J.A., Gonzalez M.I., Lee J.S., Gygi D., Howe J.D., Lee K., Darwish T.A., James M., Peterson V.K., Teat S.J., Smit B., Neaton J.B., Long J.R., Brown C.M., Chem. Sci., 5, (2014)
  • [7] Kapelewski M.T., Geier S.J., Hudson M.R., Stuck D., Mason J.A., Nelson J.N., Xiao D.J., Hulvey Z., Gilmour E., Fitzgerald S.A., Head-Gordon M., Brown C.M., Long J.R., J. Am. Chem. Soc., 136, (2014)
  • [8] Rosi N.L., Kim J., Eddaoudi M., Chen B.L., Okeeffe M., Yaghi O.M., J. Am. Chem. Soc., 127, (2005)
  • [9] Liu L., Konstas K., Hill M.R., Telfer S.G., J. Am. Chem. Soc., 135, (2013)
  • [10] Yaghi O.M., Okeeffe M., Ockwig N.W., Chae H.K., Eddaoudi M., Kim J., Nature, 423, (2003)