Gallery of soft modes: Theory and experiment at a ferromagnetic quantum phase transition

被引:1
|
作者
Stamp, P. C. E. [1 ,2 ]
Silevitch, D. M. [3 ]
Libersky, M. [3 ]
McKenzie, Ryan [4 ,5 ]
Geim, A. A. [6 ]
Rosenbaum, T. F. [3 ]
机构
[1] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada
[2] Univ British Columbia, Pacific Inst Theoret Phys, Vancouver, BC V6T 1Z1, Canada
[3] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA
[4] Iowa State Univ, Ames Natl Lab, US DOE, Ames, IA 50011 USA
[5] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA
[6] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
关键词
LOOP-GAP RESONATOR; FEYNMAN-GRAPH THEORY; RARE-EARTH; SPIN; FIELD; RELAXATION; DYNAMICS; SYSTEM; LIHOF4;
D O I
10.1103/PhysRevB.110.134420
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We examine the low-energy excitations in the vicinity of the quantum critical point in LiHoF4, a physical realization of the transverse-field Ising model, focusing on the long-range fluctuations which soften to zero energy at the ferromagnetic quantum phase transition. Microwave spectroscopy in tunable loop-gap resonator structures identifies and characterizes the soft mode and higher-energy electronuclear states. We study these modes as a function of frequency and magnetic fields applied transverse and parallel to the Ising axis. These are understood in the context of a theoretical model of a soft electronuclear mode that interacts with soft photons as well as soft phonons. We identify competing infrared divergences at the quantum critical point, coming from the photons and the electronuclear soft mode. It is an incomplete cancellation of these divergences that leads to the muted but distinct signatures observed in the experiments. The application of a longitudinal magnetic field gaps the soft mode. Measurements well away from the quantum critical point reveal a set of "Walker" modes associated with ferromagnetic domain dynamics.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Whispering Gallery Modes in Quantum Dot Micropillar Cavities
    Jones, B. D.
    Astratov, V. N.
    Oulton, R.
    Lam, S.
    Sanvitto, D.
    Whittaker, D. M.
    Fox, A. M.
    Skolnick, M. S.
    Fry, P. W.
    Hopkinson, M.
    2008 CONFERENCE ON LASERS AND ELECTRO-OPTICS & QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE, VOLS 1-9, 2008, : 1722 - +
  • [32] A unified theory of ferromagnetic quantum phase transitions in heavy fermion metals
    Wang, Jiangfan
    Yang, Yi-Feng
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2022, 65 (05)
  • [33] A unified theory of ferromagnetic quantum phase transitions in heavy fermion metals
    Jiangfan Wang
    Yi-Feng Yang
    Science China(Physics,Mechanics & Astronomy), 2022, Mechanics & Astronomy)2022 (05) : 108 - 117
  • [34] A unified theory of ferromagnetic quantum phase transitions in heavy fermion metals
    Jiangfan Wang
    Yi-Feng Yang
    Science China Physics, Mechanics & Astronomy, 2022, 65
  • [35] A unified theory of ferromagnetic quantum phase transitions in heavy fermion metals
    Wang, Jiangfan
    Yang, Yi-Feng
    Science China: Physics, Mechanics and Astronomy, 2022, 65 (05):
  • [36] Transition magnon modes in thin ferromagnetic nanogratings
    Kukhtaruk, S. M.
    Rushforth, A. W.
    Godejohann, F.
    V. Scherbakov, A.
    Bayer, M.
    PHYSICAL REVIEW B, 2022, 106 (06)
  • [37] QUANTUM THEORY OF FERROMAGNETIC RESONANCE
    RICHARDSON, JM
    PHYSICAL REVIEW, 1949, 75 (10): : 1630 - 1631
  • [38] ON THE QUANTUM THEORY OF FERROMAGNETIC RESONANCE
    POLDER, D
    PHYSICAL REVIEW, 1948, 73 (09): : 1116 - 1116
  • [39] THEORY AND EXPERIMENT AT THE SOL-GEL PHASE-TRANSITION
    STAUFFER, D
    PHYSICA A, 1981, 106 (1-2): : 177 - 188
  • [40] Quantum computation of phase transition in interacting scalar quantum field theory
    Thompson S.
    Siopsis G.
    Quantum Information Processing, 2023, 22 (11)