A Quantum Algorithm for Boolean Functions Processing

被引:1
作者
Aljuaydi, Fahad [1 ]
Abdelazim, Samar [2 ]
Darwish, Mohamed M. [3 ]
Zidan, Mohammed [4 ]
机构
[1] Prince Sattam bin Abdulaziz Univ, Coll Sci & Humanities, Dept Math, Al Kharj 11942, Saudi Arabia
[2] Assiut Univ, Fac Comp & Informat, Dept Comp Sci, Asyut 71515, Egypt
[3] Univ Tabuk, Univ Coll Al Wajh, Dept Comp Sci, Tabuk 71491, Saudi Arabia
[4] Hurghada Univ, Fac Comp & Artificial Intelligence, Dept Artificial Intelligence, Hurghada, Egypt
关键词
Quantum computing; Boolean functions; Qubit; Computational modeling; Quantum entanglement; Machine learning; Costs; Testing; Computer science; Time complexity; Quantum algorithm; junta problem; Mz; entanglement;
D O I
10.1109/ACCESS.2024.3486333
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Detecting junta variables is a critical issue in Boolean function analysis, circuit design optimization, and machine learning feature selection. In this paper, we investigate a novel quantum computation algorithm based on the Mz operator. The algorithm takes in an unknown oracle concealing a Boolean function with n variables and an unknown input state, which can be quantum or classical. The input state can be complete or incomplete quantum basis states, and it can be a weighted or uniform superposition of basis states. The proposed approach determines whether a given variable is a junta with a time cost of O (2 /& varepsilon; (2) ) and a memory cost of 2n+ 6. The algorithm is analyzed and experimentally implemented using the Qiskit simulator and IBM's real quantum computer. Experimental results show that the proposed approach achieved a quantum supremacy ratio 6300% higher than that of the classical method when verifying junta variables for Boolean functions with 12 variables. The results suggest that the proposed quantum method can verify junta variables in scenarios beyond the capabilities of current classical or quantum methods.
引用
收藏
页码:164503 / 164519
页数:17
相关论文
共 50 条
[41]   EXACT QUANTUM ALGORITHMS HAVE ADVANTAGE FOR ALMOST ALL BOOLEAN FUNCTIONS [J].
Ambainis, Andris ;
Gruska, Jozef ;
Zheng, Shenggen .
QUANTUM INFORMATION & COMPUTATION, 2015, 15 (5-6) :435-452
[42]   Aperiodic propagation criteria for Boolean functions [J].
Danielsen, Lars Eirik ;
Gulliver, T. Aaron ;
Parker, Matthew G. .
INFORMATION AND COMPUTATION, 2006, 204 (05) :741-770
[43]   Approximation of Boolean Functions by Local Search [J].
Andreas Albrecht ;
Chak-Kuen Wong .
Computational Optimization and Applications, 2004, 27 :53-82
[44]   On the analysis of a simple evolutionary algorithm on quadratic pseudo-boolean functions [J].
Wegener, Ingo ;
Witt, Carsten .
JOURNAL OF DISCRETE ALGORITHMS, 2005, 3 (01) :61-78
[45]   An Algorithm for Minimization of Boolean Functions in the Class of Toffoli Reversible Logic Circuits [J].
Frantseva, Anastasiya .
BULLETIN OF IRKUTSK STATE UNIVERSITY-SERIES MATHEMATICS, 2018, 25 :144-158
[46]   Approximation of Boolean functions by local search [J].
Albrecht, A ;
Wong, CK .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2004, 27 (01) :53-82
[47]   The Video Hiding Technique Based On DWT And Genetic Algorithm With Boolean Functions [J].
Sowmya, G. ;
Meghana, K. ;
Subbarayudu, B. ;
Naidu, R. Ch. A. ;
Keerthi, G. .
PROCEEDINGS ON 2016 2ND INTERNATIONAL CONFERENCE ON NEXT GENERATION COMPUTING TECHNOLOGIES (NGCT), 2016, :843-849
[48]   A Grover-Meets-Simon Approach to Match Vector Boolean Functions [J].
Venere, Marco ;
Barenghi, Alessandro ;
Pelosi, Gerardo .
IEEE TRANSACTIONS ON QUANTUM ENGINEERING, 2025, 6
[49]   A quantum query algorithm for computing the degree of a perfect nonlinear Boolean function [J].
WanQing Wu ;
HuanGuo Zhang .
Quantum Information Processing, 2019, 18
[50]   A quantum query algorithm for computing the degree of a perfect nonlinear Boolean function [J].
Wu, WanQing ;
Zhang, HuanGuo .
QUANTUM INFORMATION PROCESSING, 2019, 18 (03)