Growth temperature effect on a self-assembled SiC nanostructure

被引:0
|
作者
Matsumoto, T. [1 ]
Kiuchi, M. [1 ]
Sugimoto, S. [2 ]
Goto, S. [2 ]
机构
[1] Spec. Div. for Green Life Technology, Natl. Inst. Adv. Indust. Sci./T., 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
[2] Sci./Technol. Ctr. Atoms, M./I.C., Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
基金
日本学术振兴会;
关键词
Atomic force microscopy - Crystal structure - Epitaxial growth - Ion beams - Low energy electron diffraction - Nanostructured materials - Nanotechnology - Organometallics - Scanning electron microscopy - Self assembly - Sensitivity analysis;
D O I
10.1016/j.tsf.2004.06.009
中图分类号
学科分类号
摘要
Self-assembled nanostructure fabrication technology holds much potential to further the interests of nanoscience and nanotechnology. Using a low-energy mass-selected ion beam deposition system, we fabricated self-assembled silicon carbide (SiC) nanotiles. Methylsilicenium ions (SiCH3+) used as single precursors were generated from dimethylsilane (SiH 2(CH3)2). Low-energy SiCH3 + ions (100 eV) were deposited on a Si(100) substrate at 500-600 °C. The characteristics of the self-assembled SiC nanotiles were analyzed by reflection high-energy electron diffraction (RHEED), a scanning electron microscope (SEM) and an atomic force microscope (AFM). The self-assembled SiC nanostructure displayed the properties of a zinc-blende structure (3C-SiC) and heteroepitaxial growth. The shape of the self-assembled SiC nanotiles was rectangular with an edge length of 150-200 nm and a height of 10-30 nm. Optimum temperature was found to be 600 °C due to the sensitivity of crystal quality and shape of the self-assembled SiC nanotiles to growth temperature. © 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:211 / 214
相关论文
共 50 条
  • [31] Plasma etching with self-assembled monolayer masks for nanostructure fabrication
    Lercel, M.J.
    Craighead, H.G.
    Parikh, A.N.
    Seshadri, K.
    Allara, D.L.
    Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1996, 14 (3 pt 2):
  • [32] The MrgA Multimeric Complex: A self-assembled nanostructure for inorganic synthesis
    Kramer, RM
    Loganathan, AG
    Naik, RR
    Stone, M
    UNCONVENTIONAL APPROACHES TO NANOSTRUCTURES WITH APPLICATIONS IN ELECTRONICS, PHOTONICS, INFORMATION STORAGE AND SENSING, 2003, 776 : 151 - 157
  • [33] Self-assembled silver dendritic nanostructure on the surface of AAO template
    Wang, Zhijun
    Tao, Feng
    Chen, Dongbo
    Yao, Lianzeng
    Cai, Weili
    Li, Xiaoguang
    CHEMISTRY LETTERS, 2007, 36 (05) : 672 - 673
  • [34] Self-assembled ZnO Nanostructure for Field-emission Devices
    Bhattacharya, P.
    Varshney, D.
    Samanta, K.
    Katiyar, R. S.
    JOURNAL OF NANO RESEARCH, 2008, 4 : 19 - 25
  • [35] Growth and temperature characteristic of self-assembled InAs-QD on GaInP
    Amanai, H
    Nagao, S
    Sakaki, H
    JOURNAL OF CRYSTAL GROWTH, 2003, 251 (1-4) : 223 - 229
  • [36] Crystallization of a self-assembled three-dimensional DNA nanostructure
    Rendek, Kimberly N.
    Fromme, Raimund
    Grotjohann, Ingo
    Fromme, Petra
    ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS, 2013, 69 : 141 - 146
  • [37] Plasma etching with self-assembled monolayer masks for nanostructure fabrication
    Lercel, MJ
    Craighead, HG
    Parikh, AN
    Seshadri, K
    Allara, DL
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1996, 14 (03): : 1844 - 1849
  • [38] Growth of self-assembled monolayers.
    Fenter, P
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1997, 213 : 36 - PHYS
  • [39] Self-assembled growth of GaN nanowires
    Debnath, R. K.
    Meijers, R.
    Jeganathan, K.
    Richter, T.
    Stoica, T.
    Calarco, R.
    Lueth, H.
    EMAG: ELECTRON MICROSCOPY AND ANALYSIS GROUP CONFERENCE 2007, 2008, 126
  • [40] Supercritical self-assembled monolayer growth
    Mellott, JM
    Schwartz, DK
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (30) : 9369 - 9373