Topic modeling, a way to find topics in large volumes of text, has grown with the help of deep learning. This paper presents two novel approaches to topic modeling by integrating embeddings derived from Bert-Topic with the multi-grain clustering topic model (MGCTM). Recognizing the inherent hierarchical and multi-scale nature of topics in corpora, our methods utilize MGCTM to capture topic structures at multiple levels of granularity. We enhance the expressiveness of MGCTM by introducing the Generalized Dirichlet and Beta-Liouville distributions as priors, which provide greater flexibility in modeling topic proportions and capturing richer topic relationships. Comprehensive experiments on various datasets showcase the effectiveness of our proposed models in achieving superior topic coherence and granularity compared to state-of-the-art methods. Our findings underscore the potential of leveraging hybrid architectures, marrying neural embeddings with advanced probabilistic modeling, to push the boundaries of topic modeling.
机构:
Educ Univ Hong Kong, Dept Math & Informat Technol, Hong Kong, Peoples R ChinaEduc Univ Hong Kong, Dept Math & Informat Technol, Hong Kong, Peoples R China
Chen, Xieling
Xie, Haoran
论文数: 0引用数: 0
h-index: 0
机构:
Lingnan Univ, Dept Comp & Decis Sci, Hong Kong, Peoples R ChinaEduc Univ Hong Kong, Dept Math & Informat Technol, Hong Kong, Peoples R China
机构:
Korea Ocean Res & Dev Inst, Korea Ocean Satellite Ctr, Ansan 426744, Gyeonggi, South KoreaKorea Inst Geosci & Mineral Resources, Geosci Informat Ctr, Taejon 305350, South Korea
Choi, Jong-Kuk
Oh, Hyun-Joo
论文数: 0引用数: 0
h-index: 0
机构:
Korea Inst Geosci & Mineral Resources, Geosci Informat Ctr, Taejon 305350, South KoreaKorea Inst Geosci & Mineral Resources, Geosci Informat Ctr, Taejon 305350, South Korea
Oh, Hyun-Joo
Koo, Bon Joo
论文数: 0引用数: 0
h-index: 0
机构:
Korea Ocean Res & Dev Inst, Marine Living Resources Res Dept, Ansan 426744, Gyeonggi, South KoreaKorea Inst Geosci & Mineral Resources, Geosci Informat Ctr, Taejon 305350, South Korea
Koo, Bon Joo
Ryu, Joo-Hyung
论文数: 0引用数: 0
h-index: 0
机构:
Korea Ocean Res & Dev Inst, Korea Ocean Satellite Ctr, Ansan 426744, Gyeonggi, South KoreaKorea Inst Geosci & Mineral Resources, Geosci Informat Ctr, Taejon 305350, South Korea
Ryu, Joo-Hyung
Lee, Saro
论文数: 0引用数: 0
h-index: 0
机构:
Korea Inst Geosci & Mineral Resources, Geosci Informat Ctr, Taejon 305350, South KoreaKorea Inst Geosci & Mineral Resources, Geosci Informat Ctr, Taejon 305350, South Korea