Hole transport materials for scalable p-i-n perovskite solar modules

被引:1
作者
Li, Sibo [1 ,2 ]
Wang, Xin [2 ]
Huang, Nuanshan [2 ]
He, Sisi [1 ,3 ]
Qiu, Longbin [2 ]
Qi, Yabing [4 ]
机构
[1] Harbin Inst Technol, Sch Chem & Chem Engn, Harbin 150001, Peoples R China
[2] Southern Univ Sci & Technol, SUSTech Energy Inst Carbon Neutral, Dept Mech & Energy Engn, Shenzhen Key Lab Intelligent Robot & Flexible Mfg, Shenzhen 518055, Peoples R China
[3] Univ Town, Harbin Inst Technol Shenzhen, Sch Sci, Shenzhen Key Lab Flexible Printed Elect Technol, Shenzhen 518055, Guangdong, Peoples R China
[4] Shanghai Jiao Tong Univ, Global Inst Future Technol, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Hole transport layer; Buried interface; Perovskite; Stability; Scalable; NICKEL-OXIDE; LARGE-AREA; LOW-COST; EFFICIENT; CELLS; LAYER; NIOX; LEAD; PERFORMANCE; INTERFACE;
D O I
10.1016/j.enchem.2024.100135
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Perovskite solar cells (PSCs) have emerged as a promising avenue for sustainable energy production, offering high efficiency at a low cost. However, the commercialization of PSCs is significantly influenced by the characteristics and properties of the perovskite bottom layers. In this review, we explore the implications of the perovskite bottom layers of inverted p-i-n PSCs, specifically the hole transport layer (HTL) and the HTL/ perovskite interface, which plays an important role in the commercial viability of PSCs, including the key factors such as scalability, stability, and environmental safety. We examine the scalability challenge, which is essential for moving from lab-scale prototypes to mass production, through layer uniformity and compatibility with broadscale manufacturing techniques. Stability issues include both the operational lifespan and environmental durability of PSCs, highlighting the significance of the bottom layers in safeguarding against degradation. Furthermore, we venture into environmental safety measures, emphasizing the approaches to curtailing lead leakage via sophisticated HTL and HTL/perovskite interface engineering. Through a holistic evaluation of these pivotal aspects, this review aims to establish a blueprint for forthcoming enhancements in PSC technology, highlighting the imperative of optimizing the HTL and HTL/perovskite interface to navigate commercialization obstacles and fully explore the potential of PSCs in sustainable energy production.
引用
收藏
页数:38
相关论文
共 202 条
  • [1] Surface Passivation of Sputtered NiOx Using a SAM Interface Layer to Enhance the Performance of Perovskite Solar Cells
    Alghamdi, Amira R. M.
    Yanagida, Masatoshi
    Shirai, Yasuhiro
    Andersson, Gunther G.
    Miyano, Kenjiro
    [J]. ACS OMEGA, 2022, 7 (14): : 12147 - 12157
  • [2] NICKEL POLLUTION
    ASHTON, WM
    [J]. NATURE, 1972, 237 (5349) : 46 - &
  • [3] Room-Temperature-Sputtered Nanocrystalline Nickel Oxide as Hole Transport Layer for p-i-n Perovskite Solar Cells
    Aydin, Erkan
    Troughton, Joel
    De Bastiani, Michele
    Ugur, Esma
    Sajjad, Muhammad
    Alzahrani, Areej
    Neophytou, Marios
    Schwingenschlogl, Udo
    Laquai, Frederic
    Baran, Derya
    De Wolf, Stefaan
    [J]. ACS APPLIED ENERGY MATERIALS, 2018, 1 (11): : 6227 - 6233
  • [4] Toxicity of organometal halide perovskite solar cells
    Babayigit, Aslihan
    Ethirajan, Anitha
    Muller, Marc
    Conings, Bert
    [J]. NATURE MATERIALS, 2016, 15 (03) : 247 - 251
  • [5] Hazard potential of perovskite solar cell technology for potential implementation of "safe-by-design" approach
    Bae, Su-Yong
    Lee, Su Young
    Kim, Ji-Wan
    Umh, Ha Nee
    Jeong, Jaeseong
    Bae, Seongjun
    Yi, Jongheop
    Kim, Younghun
    Choi, Jinhee
    [J]. SCIENTIFIC REPORTS, 2019, 9 (1)
  • [6] Planar perovskite solar cells with long-term stability using ionic liquid additives
    Bai, Sai
    Da, Peimei
    Li, Cheng
    Wang, Zhiping
    Yuan, Zhongcheng
    Fu, Fan
    Kawecki, Maciej
    Liu, Xianjie
    Sakai, Nobuya
    Wang, Jacob Tse-Wei
    Huettner, Sven
    Buecheler, Stephan
    Fahlman, Mats
    Gao, Feng
    Snaith, Henry J.
    [J]. NATURE, 2019, 571 (7764) : 245 - +
  • [7] Spinel Co3O4 nanomaterials for efficient and stable large area carbon-based printed perovskite solar cells
    Bashi, Amna
    Shukla, Sudhanshu
    Lew, Jia Haur
    Shukla, Shashwat
    Bruno, Annalisa
    Gupta, Disha
    Baikie, Tom
    Patidar, Rahul
    Akhter, Zareen
    Priyadarshi, Anish
    Mathews, Nripan
    Mhaisalkar, Subodh G.
    [J]. NANOSCALE, 2018, 10 (05) : 2341 - 2350
  • [8] Health hazards of methylammonium lead iodide based perovskites: cytotoxicity studies
    Benmessaoud, Iness R.
    Mahul-Mellier, Anne-Laure
    Horvath, Endre
    Maco, Bohumil
    Spina, Massimo
    Lashuel, Hilal A.
    Forro, Laszlo
    [J]. TOXICOLOGY RESEARCH, 2016, 5 (02) : 407 - 419
  • [9] Overcoming Redox Reactions at Perovskite-Nickel Oxide Interfaces to Boost Voltages in Perovskite Solar Cells
    Boyd, Caleb C.
    Shallcross, R. Clayton
    Moot, Taylor
    Kerner, Ross
    Bertoluzzi, Luca
    Onno, Arthur
    Kavadiya, Shalinee
    Chosy, Cullen
    Wolf, Eli J.
    Werner, Jeremie
    Raiford, James A.
    de Paula, Camila
    Palmstrom, Axel F.
    Yu, Zhengshan J.
    Berry, Joseph J.
    Bent, Stacey F.
    Holman, Zachary C.
    Luther, Joseph M.
    Ratcliff, Erin L.
    Armstrong, Neal R.
    McGehee, Michael D.
    [J]. JOULE, 2020, 4 (08) : 1759 - 1775
  • [10] Co-Self-Assembled Monolayers Modified NiOx for Stable Inverted Perovskite Solar Cells
    Cao, Qi
    Wang, Tianyue
    Pu, Xingyu
    He, Xilai
    Xiao, Mingchao
    Chen, Hui
    Zhuang, Lvchao
    Wei, Qi
    Loi, Hok-Leung
    Guo, Peng
    Kang, Bochun
    Feng, Guangpeng
    Zhuang, Jing
    Feng, Guitao
    Li, Xuanhua
    Yan, Feng
    [J]. ADVANCED MATERIALS, 2024, 36 (16)