Human Factors and Neurophysiological Metrics in Air Traffic Control: A Critical Review

被引:66
作者
Aricò P. [1 ,2 ,3 ]
Borghini G. [1 ,2 ,3 ]
Di Flumeri G. [2 ,3 ,4 ]
Bonelli S. [5 ]
Golfetti A. [5 ]
Graziani I. [5 ]
Pozzi S. [5 ]
Imbert J.-P. [6 ]
Granger G. [6 ]
Benhacene R. [6 ]
Schaefer D. [7 ]
Babiloni F. [1 ,2 ,3 ]
机构
[1] Department of Molecular Medicine, Sapienza University of Rome, Rome
[2] BrainSigns Srl, Rome
[3] Fondazione Santa Lucia, Rome
[4] Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Rome
[5] Deep-Blue Srl., Rome
[6] École Nationale de L'Aviation Civile, Toulouse
[7] EUROCONTROL Experimental Centre, Centre du Bois des Bordes, CS 41 005, Brétigny-sur-Orge
基金
欧盟地平线“2020”;
关键词
Aerospace safety; air traffic control; biomedical measurement; human factors; neuroscience;
D O I
10.1109/RBME.2017.2694142
中图分类号
学科分类号
摘要
This paper provides a focused and organized review of the research progress on neurophysiological indicators, also called 'neurometrics,' to show how they can effectively address some of the most important human factors (HFs) needs in the air traffic management (ATM) field. In order to better understand and highlight available opportunities of such neuroscientific applications, state of the art on the most involved HFs and related cognitive processes (e.g., mental workload and cognitive training) are presented together with examples of possible applications in current and future ATM scenarios. Furthermore, this paper will discuss the potential enhancements that further research and development activities could bring to the efficiency and safety of the ATM service. © 2008-2011 IEEE.
引用
收藏
页码:250 / 263
页数:13
相关论文
共 132 条
[1]  
Scerbo M.W., Adaptive automation, Neuroergonomics: The Brain at Work. New York, (2006)
[2]  
Aloise F., Arico P., Schettini F., Salinari S., Mattia D., Cincotti F., Asynchronous gaze-independent event-related potential-based brain-computer interface, Artif. Intell. Med., 59, 2, pp. 61-69, (2013)
[3]  
Aloise F., Et al., Advanced brain computer interface for communication and control, Proc. Int. Conf. Adv. Vis. Interfaces, pp. 399-400, (2010)
[4]  
Di Flumeri G., Et al., EEG frontal asymmetry related to pleasantness of olfactory stimuli in young subjects, Selected Issues in Experimental Economics, pp. 373-381, (2016)
[5]  
Riccio A., Et al., Hybrid P300-based brain-computer interface to improve usability for people with severe motor disability: Electromyographic signals for error correction during a spelling task, Arch. Phys. Med. Rehabil., 96, 3, pp. S54-S61, (2015)
[6]  
Arico P., Aloise F., Schettini F., Salinari S., Mattia D., Cincotti F., Influence of P300 latency jitter on event related potential-based brain-computer interface performance, J. Neural Eng., 11, 3, (2014)
[7]  
Parasuraman R., Sheridan T.B., Wickens C.D., A model for types and levels of human interaction with automation, IEEE Trans. Syst., Man, Cybern. A, Syst., Hum., 30, 3, pp. 286-297, (2000)
[8]  
Bert P., La Pression Barométrique, (1878)
[9]  
Meister D., The History of Human Factors and Ergonomics, (1999)
[10]  
Parasuraman R., Rizzo M., Neuroergonomics: The Brain AtWork, (2008)