Lignin sulfonate induced ultrafast fabrication of polypyrrole-based conductive organohydrogel for high performance flexible strain and temperature sensor

被引:8
作者
Lu, Zichun [1 ,2 ]
Liu, Lingke [1 ,2 ]
Miao, Runtian [1 ,2 ]
Zhang, Ning [1 ,2 ]
Gao, Minjuan [1 ,2 ]
Fan, Xingyu [1 ,2 ]
Li, Yueqin [2 ]
机构
[1] Nanjing Forestry Univ, Jiangsu Coinnovat Ctr Efficient Proc & Utilizat Fo, Nanjing 210037, Peoples R China
[2] Nanjing Forestry Univ, Coll Chem Engn, Jiangsu Key Lab Chem & Utilizat Agr & Forest Bioma, Nanjing 210037, Peoples R China
关键词
Redox initiation; Strain sensing; Temperature responsiveness; SELF-HEALING HYDROGELS; FATIGUE-RESISTANT; STABLE STRAIN; TRANSPARENT; ADHESIVE;
D O I
10.1016/j.ijbiomac.2024.136969
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The ultrafast preparation of electrically conductive hydrogels to endow high sensing performance and temperature tolerance remains a critical challenge. Herein, lignosulfonate sodium-templated polypyrrole (LS-PPy) nanofillers were rapidly introduced into polyacrylic acid (PAA) hydrogel through ultrafast free radical polymerization in a glycerol/water binary solvent system. The resultant LS-PPy/PAA electrically conductive organohydrogel possesses satisfactory mechanical performance (strength of 56 kPa at a tensile strain of 800 %), strong adhesion, and a desirable low freezing point (-35 degrees C). Furthermore, this organohydrogel exhibits high strain sensitivity (gauge factor = 2.65), fast response time (similar to 160 ms), low signal hysteresis, and excellent cyclic stability (over 1200 cycles). And the wearable LS-PPy/PAA organohydrogel sensor could accurately and real-time monitor various intense or subtle human movements, such as joint bending, facial expression and hand writing. Besides, the developed LS-PPy/PAA temperature sensor can respond to environmental temperature variations over a wide range of -20-100 degrees C. High resolution of 0.5 degrees C with remarkable sensitivity (-0.80 %/degrees C and linearity of R-2 = 0.99) and repeatability were achieved within 36.5-40 degrees C, which makes it suitable for human body temperature monitoring. All these results demonstrate the substantial prospective value of the LS-PPy/PAA hydrogel in wearable sensors and other associated fields.
引用
收藏
页数:13
相关论文
共 69 条
[1]  
Bai YK, 2019, J MATER CHEM A, V7, P20723, DOI [10.1039/C9TA05329H, 10.1039/c9ta05329h]
[2]   Mussel-inspired ultra-stretchable, universally sticky, and highly conductive nanocomposite hydrogels [J].
Chen, Qin ;
Feng, Lan ;
Cheng, Huitong ;
Wang, Yilin ;
Wu, Hao ;
Xu, Tao ;
Zhao, Weifeng ;
Zhao, Changsheng .
JOURNAL OF MATERIALS CHEMISTRY B, 2021, 9 (09) :2221-2232
[3]   Highly stretchable and fatigue resistant hydrogels with low Young's modulus as transparent and flexible strain sensors [J].
Chen, Rui ;
Xu, Xiubin ;
Yu, Danfeng ;
Xiao, Chuanghong ;
Liu, Minhuan ;
Huang, Jianjia ;
Mao, Taoyan ;
Zheng, Cheng ;
Wang, Zhengping ;
Wu, Xu .
JOURNAL OF MATERIALS CHEMISTRY C, 2018, 6 (41) :11193-11201
[4]   Multiple-Stimuli-Responsive and Cellulose Conductive Ionic Hydrogel for Smart Wearable Devices and Thermal Actuators [J].
Chen, Zhen ;
Liu, Jing ;
Chen, Yujie ;
Zheng, Xu ;
Liu, Hezhou ;
Li, Hua .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (01) :1353-1366
[5]   A transparent and adhesive carboxymethyl cellulose/polypyrrole hydrogel electrode for flexible supercapacitors [J].
Cheng, Ya ;
Ren, Xiuyan ;
Duan, Lijie ;
Gao, Guanghui .
JOURNAL OF MATERIALS CHEMISTRY C, 2020, 8 (24) :8234-8242
[6]   TEMPO bacterial cellulose and MXene nanosheets synergistically promote tough hydrogels for intelligent wearable human-machine interaction [J].
Dong, Baoting ;
Yu, Dehai ;
Lu, Peng ;
Song, Zhaoping ;
Chen, Wei ;
Zhang, Fengshan ;
Li, Bin ;
Wang, Huili ;
Liu, Wenxia .
CARBOHYDRATE POLYMERS, 2024, 326
[7]   Switchable PNIPAm/PPyNT Hydrogel for Smart Supercapacitors: External Control of Capacitance for Pulsed Energy Generation or Prolongation of Discharge Time [J].
Elashnikov, Roman ;
Trelin, Andrii ;
Tulupova, Anastasiia ;
Miliutina, Elena ;
Zahorjanova, Kristina ;
Ulbrich, Pavel ;
Tomecek, David ;
Fitl, Premysl ;
Svorcik, Vaclav ;
Lyutakov, Oleksiy .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (40) :48030-48039
[8]   Anti-freeze hydrogel-based sensors for intelligent wearable human-machine interaction [J].
Fu, Zhiwei ;
Liu, He ;
Lyu, Qingying ;
Dai, Jingwei ;
Ji, Ce ;
Tian, Ye .
CHEMICAL ENGINEERING JOURNAL, 2024, 481
[9]   Mussel-Inspired Redox-Active and Hydrophilic Conductive Polymer Nanoparticles for Adhesive Hydrogel Bioelectronics [J].
Gan, Donglin ;
Shuai, Tao ;
Wang, Xiao ;
Huang, Ziqiang ;
Ren, Fuzeng ;
Fang, Liming ;
Wang, Kefeng ;
Xie, Chaoming ;
Lu, Xiong .
NANO-MICRO LETTERS, 2020, 12 (01)
[10]   Plant-inspired adhesive and tough hydrogel based on Ag-Lignin nanoparticles-triggered dynamic redox catechol chemistry [J].
Gan, Donglin ;
Xing, Wensi ;
Jiang, Lili ;
Fang, Ju ;
Zhao, Cancan ;
Ren, Fuzeng ;
Fang, Liming ;
Wang, Kefeng ;
Lu, Xiong .
NATURE COMMUNICATIONS, 2019, 10 (1)