A process convolution model for crash count data on a network

被引:0
|
作者
Rezaee, Hassan [1 ]
Schmidt, Alexandra M. [2 ]
Stipancic, Joshua [3 ]
Labbe, Aurélie [1 ]
机构
[1] Department of Decision Sciences, HEC Montréal, Montréal,QC, Canada
[2] Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal,QC, Canada
[3] Data Lab, Intact Insurance, Montréal,QC, Canada
来源
Accident Analysis and Prevention | 2022年 / 177卷
关键词
Autoregressive modelling - Convolution model - Crash data - Crash modelling - Network process - Network structures - Path distance - Process convolution - Road network - Spatial correlations;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [31] A generalized model for overdispersed count data
    Okamura, Hiroshi
    Punt, Andre E.
    Amano, Tatsuya
    POPULATION ECOLOGY, 2012, 54 (03) : 467 - 474
  • [32] A count data model with unobserved heterogeneity
    Gourieroux, C
    Visser, M
    JOURNAL OF ECONOMETRICS, 1997, 79 (02) : 247 - 268
  • [33] A Count Data Model of Technology Adoption
    Ana Faria
    Paul Fenn
    Alistair Bruce
    The Journal of Technology Transfer, 2003, 28 (1) : 63 - 79
  • [34] A FLEXIBLE REGRESSION MODEL FOR COUNT DATA
    Sellers, Kimberly F.
    Shmueli, Galit
    ANNALS OF APPLIED STATISTICS, 2010, 4 (02): : 943 - 961
  • [35] An empirical model for underdispersed count data
    Ridout, MS
    Besbeas, P
    STATISTICAL MODELLING, 2004, 4 (01) : 77 - 89
  • [36] FITTING A MIXTURE MODEL TO COUNT DATA
    RICHARDSON, SC
    BIOMETRICS, 1990, 46 (01) : 273 - 273
  • [37] Distributions to model overdispersed count data
    Coly, Sylvain
    Yao, Anne-Franoise
    Abrial, David
    Charras-Garrido, Myriam
    JOURNAL OF THE SFDS, 2016, 157 (02): : 39 - 63
  • [38] Predictive Model Assessment for Count Data
    Czado, Claudia
    Gneiting, Tilmann
    Held, Leonhard
    BIOMETRICS, 2009, 65 (04) : 1254 - 1261
  • [39] An Educational Data Mining Model for Supervision of Network Learning Process
    Chen, Jianhui
    Zhao, Jing
    INTERNATIONAL JOURNAL OF EMERGING TECHNOLOGIES IN LEARNING, 2018, 13 (11) : 67 - 77
  • [40] Applying a joint model of crash count and crash severity to identify road segments with high risk of fatal and serious injury crashes
    Afghari, Amir Pooyan
    Haque, Md. Mazharul
    Washington, Simon
    ACCIDENT ANALYSIS AND PREVENTION, 2020, 144