A process convolution model for crash count data on a network

被引:0
|
作者
Rezaee, Hassan [1 ]
Schmidt, Alexandra M. [2 ]
Stipancic, Joshua [3 ]
Labbe, Aurélie [1 ]
机构
[1] Department of Decision Sciences, HEC Montréal, Montréal,QC, Canada
[2] Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal,QC, Canada
[3] Data Lab, Intact Insurance, Montréal,QC, Canada
来源
Accident Analysis and Prevention | 2022年 / 177卷
关键词
Autoregressive modelling - Convolution model - Crash data - Crash modelling - Network process - Network structures - Path distance - Process convolution - Road network - Spatial correlations;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] A process convolution model for crash count data on a network
    Rezaee, Hassan
    Schmidt, Alexandra M.
    Stipancic, Joshua
    Labbe, Aurelie
    ACCIDENT ANALYSIS AND PREVENTION, 2022, 177
  • [2] Modelling crash frequencies at signalized intersections with a truncated count data model
    Kim, Do-Gyeong
    Lee, Yuhwa
    INTERNATIONAL JOURNAL OF URBAN SCIENCES, 2013, 17 (01) : 85 - 94
  • [3] An optimization framework for crash count data models
    Macias, Paula
    Ahern, Zeke
    Corry, Paul
    Rabbani, Wahi
    Paz, Alexander
    2023 IEEE 26TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS, ITSC, 2023, : 2529 - 2534
  • [4] Conditional Quantile Analysis for Crash Count Data
    Qin, Xiao
    Reyes, Perla E.
    JOURNAL OF TRANSPORTATION ENGINEERING, 2011, 137 (09) : 601 - 607
  • [5] A flexible count data model based on Bernoulli-Poisson-geometric convolution
    Nandi, Anupama
    Biswas, Aniket
    Hazarika, Partha Jyoti
    Hamedani, G. G.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2025,
  • [6] A count data model with endogenous covariates: Formulation and application to roadway crash frequency at intersections
    Bhat, Chandra R.
    Born, Kathryn
    Sidharthan, Raghuprasad
    Bhat, Prerna C.
    ANALYTIC METHODS IN ACCIDENT RESEARCH, 2014, 1 : 53 - 71
  • [7] A New General Linear Convolution Model for fMRI Data Process
    袁宏
    陈华富
    尧德中
    Journal of Electronic Science and Technology of China, 2005, (01) : 68 - 71
  • [8] A simple and useful regression model for underdispersed count data based on Bernoulli–Poisson convolution
    Marcelo Bourguignon
    Diego I. Gallardo
    Rodrigo M. R. Medeiros
    Statistical Papers, 2022, 63 : 821 - 848
  • [9] A latent process regression model for spatially correlated count data
    McShane, LM
    Albert, PS
    Palmatier, MA
    BIOMETRICS, 1997, 53 (02) : 698 - 706
  • [10] A simple and useful regression model for underdispersed count data based on Bernoulli-Poisson convolution
    Bourguignon, Marcelo
    Gallardo, Diego, I
    Medeiros, Rodrigo M. R.
    STATISTICAL PAPERS, 2022, 63 (03) : 821 - 848