Enhanced Thermoelectric Performance of Bi-Based Half-Heusler Compounds XYBi (X: Ti, Zr, Hf; Y: Co, Rh, Ir)

被引:2
|
作者
Paul, Sayan [1 ]
Ghosal, Supriya [1 ]
Pati, Swapan K. [1 ]
机构
[1] Jawaharlal Nehru Ctr Adv Sci Res, Sch Adv Mat SAMat, Theoret Sci Unit, Bangalore 560064, India
来源
ACS APPLIED ENERGY MATERIALS | 2024年 / 7卷 / 21期
关键词
Half-Heusler compounds; electronic structure; Boltzmann transport equation; thermoelectric power factor; thermal conductivity; thermoelectric efficiency; ULTRALOW THERMAL-CONDUCTIVITY; TOTAL-ENERGY CALCULATIONS; BAND; FIGURE; MERIT; TRANSITION; EFFICIENCY; TELLURIDE; SNTE; PBTE;
D O I
10.1021/acsaem.4c01652
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Over the past few decades, Half-Heusler materials have garnered significant research attention for thermoelectric applications due to their cost-effectiveness, high thermal stability, mechanical strength, high power factor (PF), nontoxicity and moderate efficiency. Here, using first-principles density functional theory combined with the semiclassical Boltzmann transport equations, we systematically studied the thermoelectric properties of nine Bi-based Half-Heusler compounds, XYBi (where, X=Ti, Zr, Hf; Y=Co, Rh, Ir). We demonstrate that these compounds exhibit a moderate band gap (E g ) and an exceptionally high power factor (PF), outperforming many conventional thermoelectric materials. The high power factor primarily stems from the very high charge carrier concentration and high electrical conductivity. However, these Half-Heusler compounds show moderate thermal conductivity (kappa). Based on our calculations, these Bi-based Half-Heusler compounds exhibit sufficiently high ZT values ranging from 0.56 to 1.98, with the highest values being 1.98 and 1.93 for n-type ZrRhBi and p-type HfRhBi, respectively. Our work reveals the inherent high ZT values in these previously less-explored Bi-based Half-Heusler compounds, indicating their strong potential for high-performance thermoelectric device applications.
引用
收藏
页码:9595 / 9607
页数:13
相关论文
共 50 条
  • [1] Enhanced Thermoelectric Performance of ZrCoSb Half-Heusler Compounds by Sn-Bi Codoping
    Tan, Shuyue
    Jiang, Lifeng
    Xian, Jingwei
    Li, Hongrui
    Li, Xinchen
    Kang, Huijun
    Guo, Enyu
    Chen, Zongning
    Wang, Tongmin
    ACS APPLIED ENERGY MATERIALS, 2024, 7 (18): : 8025 - 8034
  • [2] Synthesis and thermoelectric properties of (Ti,Zr,Hf)(Co,Pd)Sb half-Heusler compounds
    Xie, Wenjie
    Zhu, Song
    Tang, Xinfeng
    He, Jian
    Yan, Yonggao
    Ponnambalam, V.
    Zhang, Qingjie
    Poon, S. Joseph
    Tritt, Terry
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2009, 42 (23)
  • [3] Thermoelectric properties of (Ti,Zr,Hf)CoSb type half-heusler compounds
    Sekimoto, T
    Kurosaki, K
    Muta, H
    Yamanaka, S
    MATERIALS TRANSACTIONS, 2005, 46 (07) : 1481 - 1484
  • [4] Thermoelectric Properties of the XCoSb (X: Ti,Zr,Hf) Half-Heusler Alloys
    Gandi, Appala Naidu
    Schwingenschlogl, Udo
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2017, 254 (11):
  • [5] Enhanced Thermoelectric Performance in Hf-Free p-Type (Ti, Zr)CoSb Half-Heusler Alloys
    Chauhan, Nagendra S.
    Bathula, Sivaiah
    Gahtori, Bhasker
    Kolen'ko, Yury, V
    Dhar, Ajay
    JOURNAL OF ELECTRONIC MATERIALS, 2019, 48 (10) : 6700 - 6709
  • [6] Electronic structure and thermoelectric properties of Pb-based half-Heusler compounds: ABPb (A = Hf, Zr; B = Ni, Pd)
    Wang, Guangtao
    Wang, Dongyang
    JOURNAL OF ALLOYS AND COMPOUNDS, 2016, 682 : 375 - 380
  • [7] Ordered Structures and Thermoelectric Properties of MNiSn (M = Ti, Zr, Hf)-Based Half-Heusler Compounds Affected by Close Relationship with Heusler Compounds
    Kimura, Yoshisato
    Chai, Yaw-Wang
    JOM, 2015, 67 (01) : 233 - 245
  • [8] Phase separation in the half-Heusler thermoelectric materials (Hf,Ti,Zr) NiSn
    Berche, A.
    Tedenac, J. C.
    Jund, P.
    SCRIPTA MATERIALIA, 2017, 139 : 122 - 125
  • [9] Short and long range order of Half-Heusler phases in (Ti,Zr,Hf)CoSb thermoelectric compounds
    Rausch, Elisabeth
    Castegnaro, Marcus Vinicius
    Bernardi, Fabiano
    Alves, Maria C. Martins
    Morais, Jonder
    Balke, Benjamin
    ACTA MATERIALIA, 2016, 115 : 308 - 313
  • [10] Computational prediction of high thermoelectric performance in MPtSn (M = Ti, Zr, and Hf) half-Heusler compounds by first-principle study
    Xiong, Xilin
    Jiang, Quanwei
    Wan, Rundong
    Zhang, Zhengfu
    Lei, Ying
    Tian, Guocai
    SOLID STATE SCIENCES, 2022, 127