Mobile cellular network security vulnerability detection using machine learning

被引:0
|
作者
Chen G. [1 ]
Wang H. [1 ]
Zhang C. [1 ]
机构
[1] Lu’an Vocational Technical College, No. 1, Zhengyang Road, Anhui Province Lu’an City
关键词
intelligent monitoring; mobile cellular network; machine learning; MCN; ML; network security vulnerability; wireless communication;
D O I
10.1504/IJICT.2023.129955
中图分类号
学科分类号
摘要
Due to the low monitoring accuracy and duration of the traditional cellular mobile network security infringement monitoring system, a computerised cellular mobile network intelligent blank monitoring system is proposed. It connects the blank detection module to the scanner according to the data attributes to scan the blanks in the mobile cellular network. During the tracking of cyberspace signals, the data space of the system session is controlled. Mobile cells of cellular networks introduce machine intelligence data processing learning algorithms hidden in the data. Experimental results show that ML-based cellular mobile network vulnerability detection (VD-MCN) can effectively improve system control accuracy and cellular network security space control efficiency. However, there are still some things that are ignored to improve the development efficiency of MCN, and developers often only care about themselves. Whether the corresponding functions can be realised in the process of code reuse, or there is lack of understanding, inspection and testing of the reuse code, the integration of these, can achieve our expected results. Copyright © The Author(s) 2022. Published by Inderscience Publishers Ltd.
引用
收藏
页码:327 / 341
页数:14
相关论文
共 50 条
  • [21] Dynamic Detection of Mobile Malware Using Smartphone Data and Machine Learning
    de Wit, J. S. Panman
    Bucur, D.
    van der Ham, J.
    DIGITAL THREATS: RESEARCH AND PRACTICE, 2022, 3 (02):
  • [22] Android Mobile Malware Detection Using Machine Learning: A Systematic Review
    Senanayake, Janaka
    Kalutarage, Harsha
    Al-Kadri, Mhd Omar
    ELECTRONICS, 2021, 10 (13)
  • [23] Intrusion Detection in Mobile AdHoc Networks using Machine Learning Approach
    Poongothai, T.
    Duraiswamy, K.
    2014 INTERNATIONAL CONFERENCE ON INFORMATION COMMUNICATION AND EMBEDDED SYSTEMS (ICICES), 2014,
  • [24] Detection of Android Malware Using Machine Learning and Siamese Shot Learning Technique for Security
    Almarshad, Fahdah A.
    Zakariah, Mohammed
    Gashgari, Ghada Abdalaziz
    Aldakheel, Eman Abdullah
    Alzahrani, Abdullah I. A.
    IEEE ACCESS, 2023, 11 : 127697 - 127714
  • [25] Review on Network Intrusion Detection Techniques using Machine Learning
    Shashank, K.
    Balachandra, Mamatha
    PROCEEDINGS OF 2018 IEEE DISTRIBUTED COMPUTING, VLSI, ELECTRICAL CIRCUITS AND ROBOTICS (DISCOVER), 2018, : 104 - 109
  • [26] Detection of Encrypted Malicious Network Traffic using Machine Learning
    De Lucia, Michael J.
    Cotton, Chase
    MILCOM 2019 - 2019 IEEE MILITARY COMMUNICATIONS CONFERENCE (MILCOM), 2019,
  • [27] Predictive Modeling for Network Anomaly Detection using Machine Learning
    Sivakumar, G.
    Amsaveni, K.
    Chandralekha, R.
    SrirengaNachiyar, V
    Vaitheki, S.
    Marichamy, P.
    2ND INTERNATIONAL CONFERENCE ON SUSTAINABLE COMPUTING AND SMART SYSTEMS, ICSCSS 2024, 2024, : 965 - 970
  • [28] Network Traffic Anomaly Detection using Machine Learning Approaches
    Limthong, Kriangkrai
    Tawsook, Thidarat
    2012 IEEE NETWORK OPERATIONS AND MANAGEMENT SYMPOSIUM (NOMS), 2012, : 542 - 545
  • [29] Network security attack classification: leveraging machine learning methods for enhanced detection and defence
    Kandhro, Irfan Ali
    Panhwar, Ali Orangzeb
    Awan, Shafique Ahmed
    Larik, Raja Sohail Ahmed
    Abro, Abdul Ahad
    INTERNATIONAL JOURNAL OF ELECTRONIC SECURITY AND DIGITAL FORENSICS, 2025, 17 (1-2)
  • [30] Anomaly detection in blockchain using network representation and machine learning
    Martin, Kevin
    Rahouti, Mohamed
    Ayyash, Moussa
    Alsmadi, Izzat
    SECURITY AND PRIVACY, 2022, 5 (02)