A 3D network-structured gel polymer electrolyte with soluble starch for enhanced quasi-solid-state lithium-sulfur batteries

被引:0
作者
Li, Rui [1 ]
Chen, Qian [2 ]
Jian, Jinpeng [1 ]
Hou, Yaolin [1 ]
Liu, Yulong [1 ]
Liu, Jia [1 ]
Xie, Haiming [1 ]
Zhu, Jiefang [3 ,4 ]
机构
[1] Northeast Normal Univ, Fac Chem, Nation & Local United Engn Lab Power Batteries, Changchun 130024, Jilin, Peoples R China
[2] Jilin Prov Dongchi New Energy Technol Co Ltd, Changchun 130000, Jilin, Peoples R China
[3] Uppsala Univ, Dept Chem, Angstrom Lab, SE-75121 Uppsala, Sweden
[4] East China Univ Sci & Technol, Key Lab Ultrafine Mat, Minist Educ, Shanghai 200237, Peoples R China
关键词
Quasi-state Li-S battery; Gel polymer electrolyte; 3D network; Pentaerythritol tetraki-pentaerythritol tetraacrylate; Soluble starch; PERFORMANCE;
D O I
10.1016/j.jpowsour.2024.235521
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The polysulfide shuttling effect and safety concerns associated with liquid electrolytes impede the commercialization of lithium-sulfur (Li-S) batteries. We report a novel gel polymer electrolyte (GPE) denoted as "PTPHS" prepared via facile ultraviolet polymerization of pentaerythritol tetrakis (3-mercaptopropionate) (PETT) and pentaerythritol tetraacrylate (PETEA) with poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) as the polymer matrix. Soluble starch (SST) is incorporated as an interacting filler to construct a 3D network structure with intermolecular hydrogen bonds. This unique architecture not only ensures high ionic conductivity and mechanical robustness but also effectively mitigates the polysulfide shuttling effect, thereby improving cycling stability. The PTPHS-based Li-S cell exhibits stable cycling over 150 cycles at 0.2 C with 87.6 % capacity retention. This strategy provides insights into material development and structural design of GPEs for highperformance quasi-solid-state Li-S batteries.
引用
收藏
页数:8
相关论文
共 45 条
  • [21] Lu Q.W., 2017, Adv. Mater., V2913, P8
  • [22] Lithium-Sulfur Batteries: Progress and Prospects
    Manthiram, Arumugam
    Chung, Sheng-Heng
    Zu, Chenxi
    [J]. ADVANCED MATERIALS, 2015, 27 (12) : 1980 - 2006
  • [23] Durable Li-S batteries with nano-sulfur/graphite nanoplatelets composites
    Mukkabla, Radha
    Meduri, Praveen
    Deepa, Melepurath
    Ghosal, Partha
    [J]. CHEMICAL ENGINEERING JOURNAL, 2016, 303 : 369 - 383
  • [24] Pang Q, 2016, NAT ENERGY, V1, DOI [10.1038/NENERGY.2016.132, 10.1038/nenergy.2016.132]
  • [25] Trapping lithium polysulfides of a Li-S battery by forming lithium bonds in a polymer matrix
    Park, Kyusung
    Cho, Joon Hee
    Jang, Ji-Hoon
    Yu, Byeong-Chul
    De la Hoz, Andreah T.
    Miller, Kevin M.
    Ellison, Christopher J.
    Goodenough, John B.
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (08) : 2389 - 2395
  • [26] Qu H.T., 2018, Adv. Sci., V53, P11
  • [27] Recent progress on MOF-derived carbon materials for energy storage
    Ren, Jincan
    Huang, Yalan
    Zhu, He
    Zhang, Binghao
    Zhu, Hekang
    Shen, Shenghui
    Tan, Guoqiang
    Wu, Feng
    He, Hao
    Lan, Si
    Xia, Xinhui
    Liu, Qi
    [J]. CARBON ENERGY, 2020, 2 (02) : 176 - 202
  • [28] Saikia D., 1965, J. Power Sources, V2011, P2826
  • [29] Scrosati B., 1959, J. Power Sources, V2010, P2419
  • [30] 2D boron nitride nanoflakes as a multifunctional additive in gel polymer electrolytes for safe, long cycle life and high rate lithium metal batteries
    Shim, Jimin
    Kim, Hee Joong
    Kim, Byoung Gak
    Kim, Yong Seok
    Kim, Dong-Gyun
    Lee, Jong-Chan
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2017, 10 (09) : 1911 - 1916