Identification of nonlinear dynamic systems described by Hammerstein state-space models with discontinuous nonlinearities

被引:0
|
作者
Salhi H. [1 ]
Kamoun S. [1 ]
机构
[1] Laboratory of Sciences and Technique of Automatic Control and Computer Engineering (Lab-SAT), National Engineering School of Sfax (ENIS), University of Sfax, Sfax
关键词
adjustable model; dead zone nonlinearity; discontinuous nonlinearities; Hammerstein model; Kalman filter; least squares technique; parameter estimation; preaload; recursive algorithm; state estimation;
D O I
10.1504/IJESMS.2017.085059
中图分类号
学科分类号
摘要
This paper deals with the parameter estimation problem of Hammerstein state-space models with different nonlinearities. The basic idea is to develop a recursive algorithm which estimate jointly the system model parameters and the state variables by combining the adjustable model method, the least squares technique and the Kalman filter. A numerical example is provided to test the flexibility and the effectiveness of the proposed algorithm. Copyright © 2017 Inderscience Enterprises Ltd.
引用
收藏
页码:127 / 135
页数:8
相关论文
共 50 条
  • [41] State-Space Kernelized Closed-Loop Identification of Nonlinear Systems
    Shakib, M. F.
    Toth, R.
    Pogromsky, A. Y.
    Pavlov, A.
    van de Wouw, N.
    IFAC PAPERSONLINE, 2020, 53 (02): : 1126 - 1131
  • [42] Over parameterisation and optimisation approaches for identification of nonlinear stochastic systems described by Hammerstein-Wiener models
    Abouda, Saif Eddine
    Elloumi, Mourad
    Koubaa, Yassine
    Chaari, Abdessattar
    INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2019, 33 (01) : 61 - 75
  • [43] State-space identification of nonlinear flight dynamics
    Lyshevski, SE
    PROCEEDINGS OF THE 1997 IEEE INTERNATIONAL CONFERENCE ON CONTROL APPLICATIONS, 1997, : 496 - 498
  • [44] Identification of structured nonlinear state-space models for hysteretic systems using neural network hysteresis operators
    Krikelis, Konstantinos
    Pei, Jin-Song
    van Berkel, Koos
    Schoukens, Maarten
    MEASUREMENT, 2024, 224
  • [45] Identification of extended Hammerstein systems with hysteresis-type input nonlinearities described by Preisach model
    Lei Fang
    Jiandong Wang
    Qinghua Zhang
    Nonlinear Dynamics, 2015, 79 : 1257 - 1273
  • [46] A nonlinear state-space approach to hysteresis identification
    Noel, J. P.
    Esfahani, A. F.
    Kerschen, G.
    Schoukens, J.
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2017, 84 : 171 - 184
  • [47] Learning nonlinear state-space models for control
    Raiko, T
    Tornio, M
    PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), VOLS 1-5, 2005, : 815 - 820
  • [48] Identification of extended Hammerstein systems with hysteresis-type input nonlinearities described by Preisach model
    Fang, Lei
    Wang, Jiandong
    Zhang, Qinghua
    NONLINEAR DYNAMICS, 2015, 79 (02) : 1257 - 1273
  • [49] Identification of Hammerstein models with cubic spline nonlinearities
    Dempsey, EJ
    Westwick, DT
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2004, 51 (02) : 237 - 245
  • [50] Shooting methods for identification of nonlinear state-space grey-box models
    Retzler, Andras
    Swevers, Jan
    Gillis, Joris
    Kollar, Zsolt
    2022 IEEE 17TH INTERNATIONAL CONFERENCE ON ADVANCED MOTION CONTROL (AMC), 2022, : 207 - 212