Identification of nonlinear dynamic systems described by Hammerstein state-space models with discontinuous nonlinearities

被引:0
|
作者
Salhi H. [1 ]
Kamoun S. [1 ]
机构
[1] Laboratory of Sciences and Technique of Automatic Control and Computer Engineering (Lab-SAT), National Engineering School of Sfax (ENIS), University of Sfax, Sfax
关键词
adjustable model; dead zone nonlinearity; discontinuous nonlinearities; Hammerstein model; Kalman filter; least squares technique; parameter estimation; preaload; recursive algorithm; state estimation;
D O I
10.1504/IJESMS.2017.085059
中图分类号
学科分类号
摘要
This paper deals with the parameter estimation problem of Hammerstein state-space models with different nonlinearities. The basic idea is to develop a recursive algorithm which estimate jointly the system model parameters and the state variables by combining the adjustable model method, the least squares technique and the Kalman filter. A numerical example is provided to test the flexibility and the effectiveness of the proposed algorithm. Copyright © 2017 Inderscience Enterprises Ltd.
引用
收藏
页码:127 / 135
页数:8
相关论文
共 50 条
  • [31] Identification of State-space Models by Modified Nonlinear LS Optimization Method
    Zhong Lusheng
    Yang Hui
    Lu Rongxiu
    Sun Baohua
    Meng Shasha
    CCDC 2009: 21ST CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, PROCEEDINGS, 2009, : 1184 - 1187
  • [32] State-Space Models for Control and Identification
    2005, Springer Verlag (308):
  • [33] An unsupervised ensemble learning method for nonlinear dynamic state-space models
    Valpola, H
    Karhunen, J
    NEURAL COMPUTATION, 2002, 14 (11) : 2647 - 2692
  • [34] Identification of structured state-space models
    Yu, Chengpu
    Ljung, Lennart
    Verhaegen, Michel
    AUTOMATICA, 2018, 90 : 54 - 61
  • [35] IDENTIFICATION OF A CLASS OF NONLINEAR STATE-SPACE MODELS USING RPE TECHNIQUES
    ZHOU, WW
    BLANKE, M
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1989, 34 (03) : 312 - 316
  • [36] State-space models for control and identification
    Raynaud, HF
    Kulcsár, C
    Hammi, R
    ADVANCES IN COMMUNICATION CONTROL NETWORKS, 2005, 308 : 177 - 197
  • [37] IDENTIFICATION OF NONLINEAR DYNAMIC-SYSTEMS USING EXTENDED HAMMERSTEIN AND WIENER MODELS
    VOROS, J
    CONTROL-THEORY AND ADVANCED TECHNOLOGY, 1995, 10 (04): : 1203 - 1212
  • [38] Identification of Hammerstein–Wiener Systems with State-Space Subsystems Based on the Improved PSO and GSA Algorithm
    Tiancheng Zong
    Junhong Li
    Guoping Lu
    Circuits, Systems, and Signal Processing, 2023, 42 : 2755 - 2781
  • [39] Performance of an observer state-space identification in the presence of mild nonlinearities
    Bernal, D
    Gunes, B
    PROCEEDINGS OF THE 2000 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2000, : 986 - 990
  • [40] Nonfragile H∞ Stabilizing Nonlinear Systems Described by Multivariable Hammerstein Models
    Rayouf, Zeineb
    Ghorbel, Chekib
    Benhadj Braiek, Naceur
    COMPLEXITY, 2021, 2021