Identification of nonlinear dynamic systems described by Hammerstein state-space models with discontinuous nonlinearities

被引:0
作者
Salhi H. [1 ]
Kamoun S. [1 ]
机构
[1] Laboratory of Sciences and Technique of Automatic Control and Computer Engineering (Lab-SAT), National Engineering School of Sfax (ENIS), University of Sfax, Sfax
关键词
adjustable model; dead zone nonlinearity; discontinuous nonlinearities; Hammerstein model; Kalman filter; least squares technique; parameter estimation; preaload; recursive algorithm; state estimation;
D O I
10.1504/IJESMS.2017.085059
中图分类号
学科分类号
摘要
This paper deals with the parameter estimation problem of Hammerstein state-space models with different nonlinearities. The basic idea is to develop a recursive algorithm which estimate jointly the system model parameters and the state variables by combining the adjustable model method, the least squares technique and the Kalman filter. A numerical example is provided to test the flexibility and the effectiveness of the proposed algorithm. Copyright © 2017 Inderscience Enterprises Ltd.
引用
收藏
页码:127 / 135
页数:8
相关论文
共 33 条
  • [1] Bai E.W., Identification of linear systems with hard input nonlinearities of known structure, Block-oriented Nonlinear System Identification, pp. 259-270, (2010)
  • [2] Biagiola S.I., Figueroa J.L., Wiener and Hammerstein uncertain models identification, Mathematics and Computers in Simulation, 79, 11, pp. 3296-3313, (2009)
  • [3] Cao X.R., Convergence of parameter sensitivity estimates in a stochastic experiment, IEEE Transactions on Automatic Control, 30, 9, pp. 845-853, (1985)
  • [4] Chen H., Xiao Y., Ding F., Hierarchical gradient parameter estimation algorithm for Hammerstein nonlinear systems using the key term separation principle, Applied Mathematics and Computation, 247, pp. 1202-1210, (2014)
  • [5] Chen J., Wang X., Ding R., Gradient based estimation algorithm for Hammerstein systems with saturation and dead-zone nonlinearities, Applied Mathematical Modelling, 36, 1, pp. 238-243, (2012)
  • [6] Ding F., Hierarchical multi-innovation stochastic gradient algorithm for Hammerstein nonlinear system modeling, Applied Mathematical Modelling, 37, 4, pp. 1694-1704, (2013)
  • [7] Ding F., Combined state and least squares parameter estimation algorithms for dynamic systems, Applied Mathematical Modelling, 38, 1, pp. 403-412, (2014)
  • [8] Ding F., Chen T., Identification of Hammerstein nonlinear ARMAX systems, Automatica, 41, 9, pp. 1479-1489, (2005)
  • [9] Ding F., Shi Y., Chen T., Gradient based identification algorithms for nonlinear Hammerstein ARMAX models, Nonlinear Dynamics, 45, 1-2, pp. 31-43, (2005)
  • [10] Ding F., Shi Y., Chen T., Auxiliary model-based least-squares identification methods for Hammerstein output-error systems, Systems and Letters, 56, 5, pp. 373-380, (2007)