Empirical comparison of several methods for parameter estimation of a shifted lognormal distribution

被引:0
作者
Muñoz D.F. [1 ]
Ruiz C. [2 ]
Guzman S. [2 ]
机构
[1] Dpto. de Ingeniería Industrial y de Operaciones, Instituto Tecnológico Autónomo de México, Río Hondo 1, México, Distrito Federal
[2] Dpto. de Ingeniería de Negocios, Escuela Superior de Economía y Negocios, Santa Tecla, La Libertad
来源
Informacion Tecnologica | 2016年 / 27卷 / 03期
关键词
Distribution fitting; Input analysis; Lognormal distribution; Parameter estimation;
D O I
10.4067/S0718-07642016000300012
中图分类号
学科分类号
摘要
This article presents the results of the comparison done using five methodologies for the fitting of parameters of a shifted lognormal distribution. The methods considered in this research are: the method of moments, the method of local maximum likelihood, a method proposed by Nagatsuka and Balakrishnan, a modification of this latter method, and a new method proposed in this article. The method of local maximum likelihood provided estimators with good properties when the sample size is not too small and the method did not fail. On the other hand, the modified method of Nagatsuka and Balakrishnan exhibited the best performance from the point of view of the mean squared error. The new method proposed in this work exhibited the best performance from the point of view of a measure of goodness of fit.
引用
收藏
页码:131 / 140
页数:9
相关论文
共 13 条
[1]  
Cohen A.C., Whitten B.J., Estimation in the three-parameter lognormal distribution, Journal of the American Statistical Association, 75, pp. 399-404, (1980)
[2]  
Cooke P., Statistical inference for bounds of random variables, Biometrika, 66, pp. 367-374, (1979)
[3]  
Hill B.M., Three-parameter lognormal distribution and Bayesian analysis of a point-source epidemic, Journal of the American Statistical Association, 58, pp. 72-84, (1963)
[4]  
Kelton W.D., Smith J.S., Sturrock D.T., Simio and Simulation: Modeling. Analysis, Applications, (2013)
[5]  
Munoz D.F., Villafuerte D., Análisis de la entrada en simulación estocástica, Información Tecnológica, 26, pp. 13-22, (2015)
[6]  
Nagatsuka H., Balakrishnan N., A consistent parameter estimation in the three-parameter lognormal distribution, Journal of Statistical Planning and Inference, 142, pp. 2071-2086, (2012)
[7]  
Nagatsuka H., Kamakura T., Balakrishnan N., A consistent method of estimation for the three-parameter Weibull distribution, Computational Statistics & Data Analysis, 58, pp. 210-226, (2013)
[8]  
Nagatsuka H., Balakrishnan N., A consistent method of estimation for the parameters of the three-parameter inverse Gaussian distribution, Journal of Statistical Computation and Simulation, 83, pp. 1915-1931, (2013)
[9]  
Press W.H., Teukolsky B.P., Vetterling S.A., Flannery B.P., Numerical Recipes the Art of Scientific Computing, (2007)
[10]  
Raynal J.A., Garcia L.G., Análisis de caudales máximos anuales usando la distribución GVE para tres poblaciones, Información Tecnológica, 16, pp. 91-99, (2005)