Advanced dual-atom catalysts for rechargeable zinc-air batteries

被引:0
|
作者
Lin X. [1 ]
Chen G. [1 ]
Zhu Y. [1 ]
Huang H. [1 ]
机构
[1] Department of Applied Physics and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom
来源
Energy Reviews | 2024年 / 3卷 / 03期
关键词
Bifunctional oxygen electrocatalysis; Dual-atom catalysts; Solid-state zinc-air batteries; Zinc-air batteries;
D O I
10.1016/j.enrev.2024.100076
中图分类号
学科分类号
摘要
Rechargeable zinc-air batteries (ZABs) have gained extensive research attention as a promising sustainable energy technology due to their considerable theoretical specific energy density, low toxicity, abundant availability, and robust safety features. However, the practical implementation of ZABs still faces challenges, primarily attributed to the sluggish kinetics of oxygen-involved reactions, including oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) during the discharge and charge process. Therefore, searching for efficient bifunctional oxygen electrocatalysts is crucial to address these challenges. Dual-atom catalysts (DACs), an extension of single-atom catalysts (SACs), exhibit flexible architectures that allow for the combination of homogeneous and/or heterogeneous active sites, making them highly attractive for improving bifunctional activity. In this review, we first introduce the basic framework of ZABs and the structural characteristics of DACs. Subsequently, we organize the research progress on applying DACs in liquid and solid-state ZABs and elaborate on their unique catalytic mechanism. Finally, we highlight the challenges and future research directions for further innovation of DACs in ZABs. In summary, this review highlights the advantages of DACs compared with SACs used as bifunctional oxygen electrocatalysts and provides a reference for the broad applications of DACs in energy conversion and storage. © 2024 The Authors
引用
收藏
相关论文
共 50 条
  • [1] Recent advances in bifunctional dual-sites single-atom catalysts for oxygen electrocatalysis toward rechargeable zinc-air batteries
    Xie, Xiaoying
    Zhai, Zeyu
    Peng, Lishan
    Zhang, Jingbo
    Shang, Lu
    Zhang, Tierui
    SCIENCE BULLETIN, 2023, 68 (22) : 2862 - 2875
  • [2] Bifunctional Single Atom Catalysts for Rechargeable Zinc-Air Batteries: From Dynamic Mechanism to Rational Design
    Zhang, Peng
    Chen, Kuo
    Li, Jiaye
    Wang, Minmin
    Li, Min
    Liu, Yunqi
    Pan, Yuan
    ADVANCED MATERIALS, 2023, 35 (35)
  • [3] Advancements in the study of transition metal oxide bifunctional catalysts for rechargeable zinc-air batteries
    Liu J.
    Zhao Y.
    Wang Y.
    Liu L.
    Liu S.
    Qin Y.
    Wu H.
    Zhang D.
    Jia B.
    Qu X.
    Qin M.
    Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2024, 46 (01): : 56 - 72
  • [4] Electronic engineering to enhance bifunctional activity of carbon-based single-atom catalysts in rechargeable zinc-air batteries
    Chen, Yang
    He, Ting
    Liu, Yang
    Liu, Youcai
    Liu, You-Nian
    Liu, Chuntai
    Zhang, Yi
    CURRENT OPINION IN ELECTROCHEMISTRY, 2023, 37
  • [5] Advanced Extremely Durable 3D Bifunctional Air Electrodes for Rechargeable Zinc-Air Batteries
    Lee, Dong Un
    Choi, Ja-Yeon
    Feng, Kun
    Park, Hey Woong
    Chen, Zhongwei
    ADVANCED ENERGY MATERIALS, 2014, 4 (06)
  • [6] Integrating NiCo Alloys with Their Oxides as Efficient Bifunctional Cathode Catalysts for Rechargeable Zinc-Air Batteries
    Liu, Xien
    Park, Minjoon
    Kim, Min Gyu
    Gupta, Shiva
    Wu, Gang
    Cho, Jaephil
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (33) : 9654 - 9658
  • [7] Recent Advances in Electrode Design for Rechargeable Zinc-Air Batteries
    Chang, Jinfa
    Wang, Guanzhi
    Yang, Yang
    SMALL SCIENCE, 2021, 1 (10):
  • [8] Electronic Metal Support Interaction Modulation of Single-Atom Electrocatalysts for Rechargeable Zinc-Air Batteries
    Wu, Mingjie
    Zhang, Gaixia
    Wang, Weichao
    Yang, Huaming
    Rawach, Diane
    Chen, Mengjun
    Sun, Shuhui
    SMALL METHODS, 2022, 6 (03)
  • [9] Current status and advances in zinc anodes for rechargeable aqueous zinc-air batteries
    Shumiri, Muhammad Afiq Irfan Mohd
    Najib, Abdillah Sani Mohd
    Fadil, Nor Akmal
    SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, 2025, 26 (01)
  • [10] Recent Progress on Fe-Based Single/Dual-Atom Catalysts for Zn-Air Batteries
    Liu, Haoxuan
    Yu, Fangfang
    Wu, Kuan
    Xu, Gang
    Wu, Chao
    Liu, Hua-Kun
    Dou, Shi-Xue
    SMALL, 2022, 18 (43)