Deep Learning-Based Image Recognition Technology for Wind Turbine Blade Surface Defects

被引:0
作者
Cao, Zheng [1 ]
Wang, Qianming [2 ]
机构
[1] State Grid Jilin New Energy Grp Co Ltd, Changchun 130000, Peoples R China
[2] North China Elect Power Univ, Dept Automat, Baoding 071003, Peoples R China
关键词
Wind turbine blades; image recognition; defect detection; deep learning; WindDefectNet;
D O I
10.14569/IJACSA.2024.0150992
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
this paper proposes WindDefectNet, an image recognition system for surface defects of wind turbine blades, aiming at solving the key problems in wind turbine blade maintenance. At the beginning of the system design, the functional requirements and performance index requirements are clarified to ensure the realization of the functions of image acquisition and preprocessing, defect detection and classification, defect localization and size measurement, and to emphasize the key performance indexes such as accuracy, recall, processing speed and robustness of the system. The system architecture consists of multiple modules, including image acquisition and preprocessing module, feature extraction module, attention enhancement module, defect detection module, etc., which work together to achieve efficient defect recognition and localization. By adopting advanced deep learning techniques and model design, WindDefectNet is able to maintain high accuracy and stability in complex environments. Experimental results show that WindDefectNet performs well under different lighting conditions, shooting angles, wind speed and weather conditions, and has good environmental adaptability and robustness. The system provides strong technical support for blade maintenance in the wind power industry.
引用
收藏
页码:893 / 902
页数:10
相关论文
共 50 条
  • [31] Wind turbine blade defect detection and measurement technology based on improved SegFormer and pixel matching
    Li, Wanrun
    Pan, Zihong
    Zhu, Qingxin
    Du, Yongfeng
    OPTICS AND LASER TECHNOLOGY, 2024, 179
  • [32] A Deep Learning-Based Animation Video Image Data Anomaly Detection and Recognition Algorithm
    Li, Cheng
    Qian, Qiguang
    JOURNAL OF ORGANIZATIONAL AND END USER COMPUTING, 2024, 36 (01)
  • [33] Augmented Reality Dynamic Image Recognition Technology Based on Deep Learning Algorithm
    Cheng, Qiuyun
    Zhang, Sen
    Bo, Shukui
    Chen, Dengxi
    Zhang, Haijun
    IEEE ACCESS, 2020, 8 : 137370 - 137384
  • [34] Deep learning based image recognition for crack and leakage defects of metro shield tunnel
    Huang, Hong-wei
    Li, Qing-tong
    Zhang, Dong-ming
    TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY, 2018, 77 : 166 - 176
  • [35] Deep Ensemble Learning-Based Sensor for Flotation Froth Image Recognition
    Zhou, Xiaojun
    He, Yiping
    SENSORS, 2024, 24 (15)
  • [36] Performance Analysis of Different Optimizers for Deep Learning-Based Image Recognition
    Postalcioglu, Seda
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2020, 34 (02)
  • [37] Review on the Advancements in Wind Turbine Blade Inspection: Integrating Drone and Deep Learning Technologies for Enhanced Defect Detection
    Memari, Majid
    Shakya, Praveen
    Shekaramiz, Mohammad
    Seibi, Abdennour C.
    Masoum, Mohammad A. S.
    IEEE ACCESS, 2024, 12 (12): : 33236 - 33282
  • [38] Image detection of wood surface defects based on deep learning
    Chen Xian-ming
    Wang A-chuan
    Wang Chun-yan
    CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2019, 34 (09) : 879 - 887
  • [39] Sample Balancing for Deep Learning-Based Visual Recognition
    Chen, Xin
    Weng, Jian
    Luo, Weiqi
    Lu, Wei
    Wu, Huimin
    Xu, Jiaming
    Tian, Qi
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020, 31 (10) : 3962 - 3976
  • [40] Deep Learning for Automatic Vision-Based Recognition of Industrial Surface Defects: A Survey
    Prunella, Michela
    Scardigno, Roberto Maria
    Buongiorno, Domenico
    Brunetti, Antonio
    Longo, Nicola
    Carli, Raffaele
    Dotoli, Mariagrazia
    Bevilacqua, Vitoantonio
    IEEE ACCESS, 2023, 11 : 43370 - 43423