共 26 条
- [1] Chawla N.V., Bowyer K.W., Hall L.O., Kegelmeyer W.P., Smote: Syntheticminority Over-sampling Technique, Journal of Artificial Intelligence Research, 16, pp. 321-357, (2002)
- [2] Fawcett T., In vivo Spam Filtering: A Challenge Problem for Data Mining, ACM SigKDD Explorations, 5, 2, pp. 140-148, (2003)
- [3] Freund Y., Schapire R.E., A Decision-theoretic Generalization of On-line Learning and an Application to Boosting, Journal of Computer and System Sciences, 55, 1, pp. 119-139, (1997)
- [4] Guo H., Viktor H.L., Learning from Imbalanced Data Sets with Boosting and Data Generation: The DataBoost-IM Approach, ACM SigKDD Explorations, 6, 1, pp. 30-39, (2004)
- [5] Hu L.L., Huang Y., Wang Q.C., Zou Q., Jiang Y., Benchmark Comparison of ab initio microRNA Identification Methods and Software, Genetics and Molecular Research, 11, 4, pp. 4525-4538, (2012)
- [6] Kamarajan B.P., Sridhar J., Subramanian S., In silico Prediction of microRNAs in Plant Mitochondria, International Journal Bioautomation, 16, 4, pp. 251-262, (2012)
- [7] Kubat M.S., Holte R.C.S., Matwin S.S., Machine Learning for the Detection of Oil Spills in Satellite Radar Images, Machine Learning, 30, 2, pp. 195-215, (1998)
- [8] Li J.Z., Yang K., Gao H., Luo J.Z., Guo Z., Model Free Genes Election Method by Considering Unbalanced Samples, Journal of Software, 17, 7, pp. 1485-1493, (2006)
- [9] Li P., Wang X.L., Liu Y.C., Wang B.X., A Classification Method for Imbalance Data Set Based on Hybrid Strategy, Acta Electronica Sinica, 35, 11, pp. 2161-2165, (2007)
- [10] Liu X.Y., Wu J.X., Zhou Z.H., A Cascade-based Classification Method for Class-imbalanced Data, Journal of Nanjing University: Natural Sciences, 42, 2, pp. 148-155, (2006)