URHAND: Hand Prosthesis for Identifying Objects for Activities of Daily Living

被引:0
作者
Ramos, Orion [1 ]
Casas, Diego F. [1 ]
Cifuentes, Carlos A. [2 ]
Jimenez, Mario F. [1 ]
机构
[1] Univ Rosario, Sch Engn Sci & Technol, Bogota 111711, Colombia
[2] Univ West England, Bristol Robot Lab, Bristol BS16 1QY, England
关键词
Sensors; Object recognition; Prosthetic hand; Motors; Machine learning algorithms; Force; Force sensors; Classification algorithms; Intelligent sensors; Grasping; Classification; force sensors (FSRs); hand prosthesis; identification; machine learning (ML); objects for daily living;
D O I
10.1109/TIM.2024.3470013
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This work introduces URHAND, an innovative prosthetic hand designed to succeed in the identification of objects used in daily life activities, addressing a critical gap in the field of hand prosthetics and artificial intelligence. By leveraging advanced 3-D printing technologies, URHAND enhances functionality and adaptability with ten degrees of freedom (DoFs) and a unique underactuated mechanism. Dynamixel MX-106 motors provide precise finger control, while force-sensitive sensors enable the implementation of machine learning (ML) algorithms. The primary objective of this study is to create a comprehensive dataset derived from standardized objects associated with activities of daily living (ADLs) and standardized protocols, a necessary step to advance the state of the art. The dataset, including motor positions, loads, currents, and force sensing resistor (FSR) values, supports four classification problems as follows: 1) using all measured variables to identify objects; 2) using only motor positions; 3) using FSR sensor data; and 4) identifying grip types with FSR data. ML training, conducted using the PyCaret library, reveals that CatBoost, extra tree classifier, and random forest are the top-performing algorithms for object and grip-type identification. The results underscore the importance of FSR data in achieving high precision, demonstrating a novel contribution to optimizing object handling in daily activities. This work represents a significant advancement in the application of artificial intelligence and prosthetics, providing essential information for future developments in the field.
引用
收藏
页数:10
相关论文
共 38 条
[1]  
Ali M., 2020, PyCaret:An Open Source, Low-Code Machine Learning Library. pyCaret version 1.0.
[2]   Control Capabilities of Myoelectric Robotic Prostheses by Hand Amputees: A Scientific Research and Market Overview [J].
Atzori, Manfredo ;
Mueller, Henning .
FRONTIERS IN SYSTEMS NEUROSCIENCE, 2015, 9
[3]   Foreword [J].
Siciliano, Bruno .
Springer Tracts in Advanced Robotics, 2014, 95
[4]   Yale-CMU-Berkeley dataset for robotic manipulation research [J].
Calli, Berk ;
Singh, Arjun ;
Bruce, James ;
Walsman, Aaron ;
Konolige, Kurt ;
Srinivasa, Siddhartha ;
Abbeel, Pieter ;
Dollar, Aaron M. .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2017, 36 (03) :261-268
[5]   Benchmarking in Manipulation Research Using the Yale-CMU-Berkeley Object and Model Set [J].
Calli, Berk ;
Walsman, Aaron ;
Singh, Arjun ;
Srinivasa, Siddhartha ;
Abbeel, Pieter ;
Dollar, Aaron M. .
IEEE ROBOTICS & AUTOMATION MAGAZINE, 2015, 22 (03) :36-52
[6]   Hand-Object Interaction: From Human Demonstrations to Robot Manipulation [J].
Carfi, Alessandro ;
Patten, Timothy ;
Kuang, Yingyi ;
Hammoud, Ali ;
Alameh, Mohamad ;
Maiettini, Elisa ;
Weinberg, Abraham Itzhak ;
Faria, Diego ;
Mastrogiovanni, Fulvio ;
Alenya, Guillem ;
Natale, Lorenzo ;
Perdereau, Veronique ;
Vincze, Markus ;
Billard, Aude .
FRONTIERS IN ROBOTICS AND AI, 2021, 8
[7]   Literature Review on Needs of Upper Limb Prosthesis Users [J].
Cordella, Francesca ;
Ciancio, Anna Lisa ;
Sacchetti, Rinaldo ;
Davalli, Angelo ;
Cutti, Andrea Giovanni ;
Guglielmelli, Eugenio ;
Zollo, Loredana .
FRONTIERS IN NEUROSCIENCE, 2016, 10
[8]  
Cranny A., 2003, P EUROSENSORS, P795
[9]   Soft-Sensor System for Grasp Type Recognition in Underactuated Hand Prostheses [J].
De Arco, Laura ;
Pontes, Maria Jose ;
Segatto, Marcelo E. V. ;
Monteiro, Maxwell E. ;
Cifuentes, Carlos A. ;
Diaz, Camilo A. R. .
SENSORS, 2023, 23 (07)
[10]  
De Arco L, 2022, P IEEE RAS-EMBS INT, DOI [10.1109/BIOROB52689.2022.9925316, 10.1109/BioRob52689.2022.9925316]