Functional generalized canonical correlation analysis for studying multiple longitudinal variables

被引:0
|
作者
Sort, Lucas [1 ]
Le Brusquet, Laurent [1 ]
Tenenhaus, Arthur [1 ]
机构
[1] Univ Paris Saclay, CNRS, CentraleSupelec, Lab Signaux & Syst, F-91190 Gif Sur Yvette, France
关键词
functional data; generalized canonical correlation analysis; longitudinal data; SETS;
D O I
10.1093/biomtc/ujae113
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we introduce functional generalized canonical correlation analysis, a new framework for exploring associations between multiple random processes observed jointly. The framework is based on the multiblock regularized generalized canonical correlation analysis framework. It is robust to sparsely and irregularly observed data, making it applicable in many settings. We establish the monotonic property of the solving procedure and introduce a Bayesian approach for estimating canonical components. We propose an extension of the framework that allows the integration of a univariate or multivariate response into the analysis, paving the way for predictive applications. We evaluate the method's efficiency in simulation studies and present a use case on a longitudinal dataset.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Functional regularized generalized canonical correlation analysis
    Wang Z.
    Tenenhaus A.
    Wang H.
    Zhao Q.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2022, 48 (10): : 1960 - 1969
  • [2] Functional Multiple-Set Canonical Correlation Analysis
    Hwang, Heungsun
    Jung, Kwanghee
    Takane, Yoshio
    Woodward, Todd S.
    PSYCHOMETRIKA, 2012, 77 (01) : 48 - 64
  • [3] Functional Multiple-Set Canonical Correlation Analysis
    Heungsun Hwang
    Kwanghee Jung
    Yoshio Takane
    Todd S. Woodward
    Psychometrika, 2012, 77 : 48 - 64
  • [4] Revisiting Deep Generalized Canonical Correlation Analysis
    Karakasis, Paris A.
    Sidiropoulos, Nicholas D.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2023, 71 : 4392 - 4406
  • [5] Generalized canonical correlation analysis with missing values
    van de Velden, Michel
    Takane, Yoshio
    COMPUTATIONAL STATISTICS, 2012, 27 (03) : 551 - 571
  • [6] Generalized Canonical Correlation Analysis: A Subspace Intersection Approach
    Sorensen, Mikael
    Kanatsoulis, Charilaos, I
    Sidiropoulos, Nicholas D.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 : 2452 - 2467
  • [7] Tensor generalized canonical correlation analysis
    Girka, Fabien
    Gloaguen, Arnaud
    Le Brusquet, Laurent
    Zujovic, Violetta
    Tenenhaus, Arthur
    INFORMATION FUSION, 2024, 102
  • [8] Regularized Generalized Canonical Correlation Analysis
    Arthur Tenenhaus
    Michel Tenenhaus
    Psychometrika, 2011, 76
  • [9] Kernel Generalized Canonical Correlation Analysis
    Tenenhaus, Arthur
    Philippe, Cathy
    Frouin, Vincent
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2015, 90 : 114 - 131
  • [10] An Extension of the Canonical Correlation Analysis to the Case of Multiple Observations of Two Groups of Variables
    Phlypo, Ronald
    Congedo, Marco
    2010 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2010, : 1894 - 1897