Ship's principal particulars mathematical modeling using support vector machine

被引:0
|
作者
Gao, Shang [1 ]
机构
[1] School of Computer Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212003, China
来源
Journal of Computational Information Systems | 2011年 / 7卷 / 03期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
6
引用
收藏
页码:846 / 853
相关论文
共 50 条
  • [41] Lightweight Anomaly Detection Scheme Using Incremental Principal Component Analysis and Support Vector Machine
    Zamry, Nurfazrina M.
    Zainal, Anazida
    Rassam, Murad A.
    Alkhammash, Eman H.
    Ghaleb, Fuad A.
    Saeed, Faisal
    SENSORS, 2021, 21 (23)
  • [42] Modeling for helicopter based on support vector machine
    School of Astronautics, Harbin Institute of Technology, Harbin 150001, China
    Jisuanji Jicheng Zhizao Xitong, 2008, 3 (470-476):
  • [43] Fault diagnosis method of rolling bearing using principal component analysis and support vector machine
    Gu, Ying-Kui
    Zhou, Xiao-Qing
    Yu, Dong-Ping
    Shen, Yan-Jun
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2018, 32 (11) : 5079 - 5088
  • [44] Structural health monitoring of harbor caissons using support vector machine and principal component analysis
    Bolourani, Anahita
    Bitaraf, Maryam
    Tak, Ala Nekouvaght
    STRUCTURES, 2021, 33 : 4501 - 4513
  • [45] Rate-Dependent Hysteresis Modeling and Control of a Piezostage Using Online Support Vector Machine and Relevance Vector Machine
    Wong, Pak-Kin
    Xu, Qingsong
    Vong, Chi-Man
    Wong, Hang-Cheong
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2012, 59 (04) : 1988 - 2001
  • [46] Support vector machine ensembles for discriminant analysis for ranking principal components
    Tiene A. Filisbino
    Gilson A. Giraldi
    Carlos E. Thomaz
    Multimedia Tools and Applications, 2020, 79 : 25277 - 25313
  • [47] Sufficient dimension reduction via principal Lq support vector machine
    Artemiou, Andreas
    Dong, Yuexiao
    ELECTRONIC JOURNAL OF STATISTICS, 2016, 10 (01): : 783 - 805
  • [48] Soil Water Dynamic Modeling Using the Physical and Support Vector Machine Methods
    Lamorski, Krzysztof
    Pastuszka, Tomasz
    Krzyszczak, Jaromir
    Slawinski, Cezary
    Witkowska-Walczak, Barbara
    VADOSE ZONE JOURNAL, 2013, 12 (04)
  • [49] Spatial Choice Modeling Using the Support Vector Machine (SVM): Characterization and Prediction
    Yoon, Yong
    PREDICTIVE ECONOMETRICS AND BIG DATA, 2018, 753 : 767 - 778
  • [50] Support vector machine ensembles for discriminant analysis for ranking principal components
    Filisbino, Tiene A.
    Giraldi, Gilson A.
    Thomaz, Carlos E.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (35-36) : 25277 - 25313