Mine water discharge prediction based on least squares support vector machines

被引:0
|
作者
Guo X. [1 ]
Ma X. [2 ]
机构
[1] School of Computer Science and Technology, Xuzhou Normal University
[2] School of Information and Electrical Engineering, China University of MiningandTechnology
来源
Mining Science and Technology | 2010年 / 20卷 / 05期
关键词
chaotic time series; LS-SVM; mine water discharge; phase space reconstruction; prediction;
D O I
10.1016/S1674-5264(09)60273-8
中图分类号
学科分类号
摘要
In order to realize the prediction of a chaotic time series of mine water discharge, an approach incorporating phase space reconstruction theory and statistical learning theory was studied. A differential entropy ratio method was used to determine embedding parameters to reconstruct the phase space. We used a multi-layer adaptive best-fitting parameter search algorithm to estimate the LS-SVM optimal parameters which were adopted to construct a LS-SVM prediction model for the mine water chaotic time series. The results show that the simulation performance of a single-step prediction based on this LS-SVM model is markedly superior to that based on a RBF model. The multi-step prediction results based on LS-SVM model can reflect the development of mine water discharge and can be used for short-term forecasting of mine water discharge. © 2010 China University of Mining and Technology.
引用
收藏
页码:738 / 742
页数:4
相关论文
共 50 条
  • [31] Application of Fuzzy Least Squares Support Vector Machines in Landslide Deformation Prediction
    Chen, Wei
    Xiao, Xiao
    Zhang, Jian
    ADVANCES IN INDUSTRIAL AND CIVIL ENGINEERING, PTS 1-4, 2012, 594-597 : 2402 - 2405
  • [32] Least Squares Support Vector Machines based on Fuzzy Rough Set
    Zhang, Zhi-Wei
    He, Qiang
    Chen, De-Gang
    Wang, Hui
    IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC 2010), 2010,
  • [33] Modeling and control of PEMFC based on least squares support vector machines
    Li, X
    Cao, GY
    Zhu, XJ
    ENERGY CONVERSION AND MANAGEMENT, 2006, 47 (7-8) : 1032 - 1050
  • [34] Predictive control algorithm based on least squares support vector machines
    Liu, Bin
    Su, Hong-Ye
    Chu, Jian
    Kongzhi yu Juece/Control and Decision, 2004, 19 (12): : 1399 - 1402
  • [35] New least squares support vector machines based on matrix patterns
    Wang, Zhe
    Chen, Songean
    NEURAL PROCESSING LETTERS, 2007, 26 (01) : 41 - 56
  • [36] Subspace Based Least Squares Support Vector Machines for Pattern Classification
    Kitamura, Takuya
    Abe, Shigeo
    Fukui, Kazuhiro
    IJCNN: 2009 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1- 6, 2009, : 1275 - +
  • [37] Sparseness of least squares support vector machines based on active learning
    Yu, Zheng-Tao
    Zou, Jun-Jie
    Zhao, Xing
    Su, Lei
    Mao, Cun-Li
    Nanjing Li Gong Daxue Xuebao/Journal of Nanjing University of Science and Technology, 2012, 36 (01): : 12 - 17
  • [38] New Least Squares Support Vector Machines Based on Matrix Patterns
    Zhe Wang
    Songcan Chen
    Neural Processing Letters, 2007, 26 : 41 - 56
  • [39] Soft sensor modeling based on least squares support vector machines
    Wang, HF
    Hu, DJ
    ISTM/2005: 6TH INTERNATIONAL SYMPOSIUM ON TEST AND MEASUREMENT, VOLS 1-9, CONFERENCE PROCEEDINGS, 2005, : 3741 - 3744
  • [40] Fuzzy least squares twin support vector machines
    Sartakhti, Javad Salimi
    Afrabandpey, Homayun
    Ghadiri, Nasser
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2019, 85 : 402 - 409